
May 2025, Les Houches

Learning Formal Foundations of CS

Thomas Zeume

Ruhr University Bochum

Project coordinators: Marko Schmellenkamp, Fabian Vehlken, Thomas Zeume
Interface Design: Christine Orhan
Implementation: Sven Argo, Jill Berg, Emilio Carrasco Bustamante, Lukas Dienst, Aiyana Erbe, Gaetano Geck, Ari Haji, Jonas Haldimann, Lauin Hamow, Tristan Kneisel,

Alexandra Latys, Artur Ljulin, Johannes May, Jan Michalak, Sebastian Peter, Lukas Pradel, Lars Richter, Marius Rößler, Patrick Roy, Florian Schmalstieg,
Jonas Schmidt, Cedric Siems, Daniel Sonnabend, Fynn Stebel, Felix Tschirbs, Patrick Wieland, Oskar Wilke, Jan Zumbrink

Contents: Tom-Felix Berger, Ariane Blank, Jan Eyll, Alicia Gayda, Elias Radtke, Sidra Saied Ali, Florian Schmalstieg,
Mira Schwartz, Thomas Schwentick, Cara Volbracht, Marco Wojtek

https://iltis.rub.de

https://iltis.rub.de
https://iltis.rub.de


Part I:

A Short Guided Tour



Thomas Zeume Iltis: Learning Logic on the Web

3

Learning Logic in the Web
National Research council of the US:

Leverage technologies to make the most effective use of stu-
dents’ time, shifting from information delivery to sense-making
and practice in class

Use technology to
• provide additional learning opportunities for students
•make room for theory and in-depth problem solving in class

Our goals for technological learning support:
•Coverage of a wide range of topics in formal foundations of
computer science;
•Advanced feedback and support provided immediately, exten-
sively, and individually;
• Flexibility in how to use and combine educational tasks;
• Easy integration into courses; and
• Extensibility of topical range and feedback mechanisms.



Thomas Zeume Iltis: Learning Logic on the Web

3

Learning Logic in the Web
National Research council of the US:

Leverage technologies to make the most effective use of stu-
dents’ time, shifting from information delivery to sense-making
and practice in class

Use technology to
• provide additional learning opportunities for students
•make room for theory and in-depth problem solving in class

Our goals for technological learning support:
•Coverage of a wide range of topics in formal foundations of
computer science;
•Advanced feedback and support provided immediately, exten-
sively, and individually;
• Flexibility in how to use and combine educational tasks;
• Easy integration into courses; and
• Extensibility of topical range and feedback mechanisms.



Thomas Zeume Iltis: Learning Logic on the Web

3

Learning Logic in the Web
National Research council of the US:

Leverage technologies to make the most effective use of stu-
dents’ time, shifting from information delivery to sense-making
and practice in class

Use technology to
• provide additional learning opportunities for students
•make room for theory and in-depth problem solving in class

Our goals for technological learning support:
•Coverage of a wide range of topics in formal foundations of
computer science;
•Advanced feedback and support provided immediately, exten-
sively, and individually;
• Flexibility in how to use and combine educational tasks;
• Easy integration into courses; and
• Extensibility of topical range and feedback mechanisms.



Thomas Zeume Iltis: Learning Logic on the Web

4

An Assignment for Propositional Logic (1/2)
An Exercise for Propositional Logic
An analysis has revealed the following dependencies
among three components of a software system:
1. If the backend is working correctly, the database is
also working correctly.

2. The backend is only working incorrectly if neither the
database nor the user interface is working correctly.

3. At least one component works correctly.

Task A: modelling
Provide a propositional formula for each dependency.

Task B: transformation and reasoning
Show by resolution that the dependencies imply
that the database and the backend work correctly.

(1) Choose a vocabulary

(2) Formalize the scenario

(3) Formalize the conclusion

(4) What now?

(5) Transform into CNF

(6) Apply resolution



Thomas Zeume Iltis: Learning Logic on the Web

4

An Assignment for Propositional Logic (1/2)
An Exercise for Propositional Logic
An analysis has revealed the following dependencies
among three components of a software system:
1. If the backend is working correctly, the database is
also working correctly.

2. The backend is only working incorrectly if neither the
database nor the user interface is working correctly.

3. At least one component works correctly.

Task A: modelling
Provide a propositional formula for each dependency.

Task B: transformation and reasoning
Show by resolution that the dependencies imply
that the database and the backend work correctly.

(1) Choose a vocabulary

(2) Formalize the scenario

(3) Formalize the conclusion

(4) What now?

(5) Transform into CNF

(6) Apply resolution



Thomas Zeume Iltis: Learning Logic on the Web

5

An Assignment for Propositional Logic (2/2)

(1) Choose a vocabulary

(2) Formalize the scenario

(3) Formalize the conclusion

(4) What now?

(5) Transform into CNF

(6) Apply resolution



Thomas Zeume Iltis: Learning Logic on the Web

5

An Assignment for Propositional Logic (2/2)

(1) Choose a vocabulary

(2) Formalize the scenario

(3) Formalize the conclusion

(4) What now?

(5) Transform into CNF

(6) Apply resolution

Step 1: Choosing a suitable propositional vocabulary

Choose suitable propositional variables for modelling the above scenario
with propositional formulas. Also specify the intended meaning for each of
your variables.

:  Check

Add another variable

Finish Task



Thomas Zeume Iltis: Learning Logic on the Web

5

An Assignment for Propositional Logic (2/2)

(1) Choose a vocabulary

(2) Formalize the scenario

(3) Formalize the conclusion

(4) What now?

(5) Transform into CNF

(6) Apply resolution

Step 1: Choosing a suitable propositional vocabulary

Choose suitable propositional variables for modelling the above scenario

with propositional formulas. Also specify the intended meaning for each of

your variables.

B : ✓

D :  Check

Add another variable

The backend is working correctly.

The database is okay

i



Thomas Zeume Iltis: Learning Logic on the Web

5

An Assignment for Propositional Logic (2/2)

(1) Choose a vocabulary

(2) Formalize the scenario

(3) Formalize the conclusion

(4) What now?

(5) Transform into CNF

(6) Apply resolution

Step 1: Choosing a suitable propositional vocabulary

Choose suitable propositional variables for modelling the above scenario
with propositional formulas. Also specify the intended meaning for each of
your variables.

B : ✓

D : ✓

U : ✓

The backend is working correctly.

The database is working correctly.

The user interface is working correctly.

Congratulations! You have successfully completed this task.



Thomas Zeume Iltis: Learning Logic on the Web

5

An Assignment for Propositional Logic (2/2)

(1) Choose a vocabulary

(2) Formalize the scenario

(3) Formalize the conclusion

(4) What now?

(5) Transform into CNF

(6) Apply resolution

Step 2: Describing the dependencies with propositional formulas

 Check

 Check

 Check

Provide a propositional formula for each of the dependencies.

If the backend is working correctly, then the database is working correctly as
well.

The backend is not working correct only if neither the database nor the user
interface is working correctly.

At least one component works correctly.

Finish Task

Insert a formula

Insert a formula

Insert a formula

B: The backend is working correctly.
D: The database is working correctly.
U: The user interface is working correctly.

Propositional variables



Thomas Zeume Iltis: Learning Logic on the Web

5

An Assignment for Propositional Logic (2/2)

(1) Choose a vocabulary

(2) Formalize the scenario

(3) Formalize the conclusion

(4) What now?

(5) Transform into CNF

(6) Apply resolution

Step 2: Describing the dependencies with propositional formulas

✓

×

 Check

Provide a propositional formula for each of the dependencies.

If the backend is working correctly, then the database is working correctly as
well.

The backend is not working correct only if neither the database nor the user
interface is working correctly.

Your formula is not correct.

You might have mixed up "If ... then ..." and "... only if ...".

At least one component works correctly.

Finish Task

B → D

(¬D ∧ ¬U) → ¬B

Insert a formula

B: The backend is working correctly.
D: The database is working correctly.
U: The user interface is working correctly.

Propositional variables



Thomas Zeume Iltis: Learning Logic on the Web

5

An Assignment for Propositional Logic (2/2)

(1) Choose a vocabulary

(2) Formalize the scenario

(3) Formalize the conclusion

(4) What now?

(5) Transform into CNF

(6) Apply resolution

Step 2: Describing the dependencies with propositional formulas

✓

✓

✓

Provide a propositional formula for each of the dependencies.

If the backend is working correctly, then the database is working correctly as
well.

The backend is not working correct only if neither the database nor the user
interface is working correctly.

At least one component works correctly.

B: The backend is working correctly.
D: The database is working correctly.
U: The user interface is working correctly.

Propositional variables

B → D

¬B → (¬D ∧ ¬U)

B ∨ D ∨ U

Congratulations! You have successfully completed this task.



Thomas Zeume Iltis: Learning Logic on the Web

5

An Assignment for Propositional Logic (2/2)

(1) Choose a vocabulary

(2) Formalize the scenario

(3) Formalize the conclusion

(4) What now?

(5) Transform into CNF

(6) Apply resolution

Step 3: Describing Julia's conclusion with a propositional formula

 Check

Provide a propositional formula for Julia's conclusion.

Both the database and the backend are working correctly.

Finish Task

Insert a formula

B: The backend is working correctly.
D: The database is working correctly.
U: The user interface is working correctly.

Propositional variables



Thomas Zeume Iltis: Learning Logic on the Web

5

An Assignment for Propositional Logic (2/2)

(1) Choose a vocabulary

(2) Formalize the scenario

(3) Formalize the conclusion

(4) What now?

(5) Transform into CNF

(6) Apply resolution

Step 3: Describing Julia's conclusion with a propositional formula

✓

Provide a propositional formula for Julia's conclusion.

Both the database and the backend are working correctly.

B: The backend is working correctly.
D: The database is working correctly.
U: The user interface is working correctly.

Propositional variables

B ∧ D

Congratulations! You have successfully completed this task.



Thomas Zeume Iltis: Learning Logic on the Web

5

An Assignment for Propositional Logic (2/2)

(1) Choose a vocabulary

(2) Formalize the scenario

(3) Formalize the conclusion

(4) What now?

(5) Transform into CNF

(6) Apply resolution

Step 4: What to prove?

Our goal is to show that Julia's conclusion can be inferred from the observed dependencies. We have

already modelled the dependencies between the individual components by the three propositional

formulas

: If the backend is working correctly, the database is also working correctly.

: The backend is not working correct only if neither the database nor the user interface

is working correctly.

: At least one component works correctly.

and Julia's conclusion by the formula

: Both the database and the backend are working correctly.

What do we need to show in order to verify that Julia's conclusion follows from the dependencies of

the software system?

Answer this question by selecting all correct answers.

Julia's conclusion holds if and only if 

φ

1

φ

2

φ

3

ψ

…

the formula  has a model.ψ

the inference  holds.ψ ⊨ φ

1

∧ φ

2

∧ φ

3

the inference  holds.{φ

1

, φ

2

, φ

3

} ⊨ ψ

an assignment  with  exists.α α ⊨ ψ

the formula  can be inferred from the formula .ψ φ

1

∧ φ

2

∧ φ

3

every assignment compatible with  and  which is a model of

 is also a model of .

φ

1

, φ

2

, φ

3

ψ

{φ

1

, φ

2

, φ

3

} ψ



Thomas Zeume Iltis: Learning Logic on the Web

5

An Assignment for Propositional Logic (2/2)

(1) Choose a vocabulary

(2) Formalize the scenario

(3) Formalize the conclusion

(4) What now?

(5) Transform into CNF

(6) Apply resolution

Step 4: What to prove?

Our goal is to show that Julia's conclusion can be inferred from the observed dependencies. We have

already modelled the dependencies between the individual components by the three propositional

formulas

: If the backend is working correctly, the database is also working correctly.

: The backend is not working correct only if neither the database nor the user interface

is working correctly.

: At least one component works correctly.

and Julia's conclusion by the formula

: Both the database and the backend are working correctly.

What do we need to show in order to verify that Julia's conclusion follows from the dependencies of

the software system?

Answer this question by selecting all correct answers.

Julia's conclusion holds if and only if 

φ

1

φ

2

φ

3

ψ

…

the formula  has a model.ψ

the inference  holds.ψ ⊨ φ

1

∧ φ

2

∧ φ

3

the inference  holds.{φ

1

, φ

2

, φ

3

} ⊨ ψ

an assignment  with  exists.α α ⊨ ψ

the formula  can be inferred from the formula .ψ φ

1

∧ φ

2

∧ φ

3

every assignment compatible with  and  which is a model of

 is also a model of .

φ

1

, φ

2

, φ

3

ψ

{φ

1

, φ

2

, φ

3

} ψ



Thomas Zeume Iltis: Learning Logic on the Web

5

An Assignment for Propositional Logic (2/2)

(1) Choose a vocabulary

(2) Formalize the scenario

(3) Formalize the conclusion

(4) What now?

(5) Transform into CNF

(6) Apply resolution

Step 4: How to prove the inference?

In order to verify that Julia's conclusion is correct, we need to prove the

inference. How can we prove this?

Answer this question by selecting all correct answers.

The inference  holds if and only if {φ

1

, φ

2

, φ

3

} ⊨ ψ …

has a model.φ

1

∨ φ

2

∨ φ

3

∨ ¬ψ

is unsatis�able.φ

1

∨ φ

2

∨ φ

3

∨ ¬ψ

has a model.φ

1

∧ φ

2

∧ φ

3

∧ ¬ψ

is unsatis�able.φ

1

∧ φ

2

∧ φ

3

∧ ¬ψ

is a tautology.φ

1

∧ φ

2

∧ φ

3

∧ ¬ψ

holds.φ

1

∧ φ

2

∧ φ

3

∧ ¬ψ ≡ ⊥

holds.(φ

1

∧ φ

2

∧ φ

3

) → ψ ≡ ⊤

holds.(φ

1

∧ φ

2

∧ φ

3

) → ψ ≡ ⊥



Thomas Zeume Iltis: Learning Logic on the Web

5

An Assignment for Propositional Logic (2/2)

(1) Choose a vocabulary

(2) Formalize the scenario

(3) Formalize the conclusion

(4) What now?

(5) Transform into CNF

(6) Apply resolution

Step 4: How to prove the inference?

In order to verify that Julia's conclusion is correct, we need to prove the

inference. How can we prove this?

Answer this question by selecting all correct answers.

The inference  holds if and only if {φ

1

, φ

2

, φ

3

} ⊨ ψ …

has a model.φ

1

∨ φ

2

∨ φ

3

∨ ¬ψ

is unsatis�able.φ

1

∨ φ

2

∨ φ

3

∨ ¬ψ

has a model.φ

1

∧ φ

2

∧ φ

3

∧ ¬ψ

is unsatis�able.φ

1

∧ φ

2

∧ φ

3

∧ ¬ψ

is a tautology.φ

1

∧ φ

2

∧ φ

3

∧ ¬ψ

holds.φ

1

∧ φ

2

∧ φ

3

∧ ¬ψ ≡ ⊥

holds.(φ

1

∧ φ

2

∧ φ

3

) → ψ ≡ ⊤

holds.(φ

1

∧ φ

2

∧ φ

3

) → ψ ≡ ⊥



Thomas Zeume Iltis: Learning Logic on the Web

5

An Assignment for Propositional Logic (2/2)

(1) Choose a vocabulary

(2) Formalize the scenario

(3) Formalize the conclusion

(4) What now?

(5) Transform into CNF

(6) Apply resolution

Step 5: Transformation into conjunctive normal form

Transform the formula into conjunctive normal form.

 Check
 Copy

Finish task: conjunctive normal form reached

(B→D)∧(¬B→(¬D∧¬U))∧(B∨D∨U)∧¬(B∧D)
Insert an equivalent formula



Thomas Zeume Iltis: Learning Logic on the Web

5

An Assignment for Propositional Logic (2/2)

(1) Choose a vocabulary

(2) Formalize the scenario

(3) Formalize the conclusion

(4) What now?

(5) Transform into CNF

(6) Apply resolution

Step 5: Transformation into conjunctive normal form

Transform the formula into conjunctive normal form.

 Check
 Copy

Finish task: conjunctive normal form reached

(B→D)∧(¬B→(¬D∧¬U))∧(B∨D∨U)∧¬(B∧D)

(B→D)∧(¬B∨(¬D∧¬U))∧(B∨D∨U)∧¬(B∧D)

The formula is not equivalent to the previous formula.



Thomas Zeume Iltis: Learning Logic on the Web

5

An Assignment for Propositional Logic (2/2)

(1) Choose a vocabulary

(2) Formalize the scenario

(3) Formalize the conclusion

(4) What now?

(5) Transform into CNF

(6) Apply resolution

Step 5: Transformation into conjunctive normal form

Transform the formula into conjunctive normal form.

(B→D)∧(¬B→(¬D∧¬U))∧(B∨D∨U)∧¬(B∧D)

(¬B∨D)∧(¬¬B∨(¬D∧¬U))∧(B∨D∨U)∧¬(B∧D)

(¬B∨D)∧(B∨(¬D∧¬U))∧(B∨D∨U)∧(¬B∨¬D)

(¬B∨D)∧(B∨¬D)∧(B∨¬U)∧(B∨D∨U)∧(¬B∨¬D)

Congratulations! You have successfully completed this task.

Back to top



Thomas Zeume Iltis: Learning Logic on the Web

5

An Assignment for Propositional Logic (2/2)

(1) Choose a vocabulary

(2) Formalize the scenario

(3) Formalize the conclusion

(4) What now?

(5) Transform into CNF

(6) Apply resolution

Step 6: Propositional resolution

Now use propositional resolution to show that the set of clauses resulting
from the formula above is unsatis:able.

Resolve

{¬B ,  D} {B ,  ¬D} {B ,  ¬U} {B ,  D ,  U} {¬B ,  ¬D}

Finish task: empty clause reached





Thomas Zeume Iltis: Learning Logic on the Web

5

An Assignment for Propositional Logic (2/2)

(1) Choose a vocabulary

(2) Formalize the scenario

(3) Formalize the conclusion

(4) What now?

(5) Transform into CNF

(6) Apply resolution

Step 6: Propositional resolution

Now use propositional resolution to show that the set of clauses resulting
from the formula above is unsatis:able.

Resolve

{¬B ,  D} {B ,  ¬D} {B ,  ¬U} {B ,  D ,  U} {¬B ,  ¬D}

Finish task: empty clause reached



Back to top

Enter resolvent 

Enter the resolvent for the two clauses
you selected:

B D U

, ¬ { } 

{B ,  D}

{B ,  ¬U} {B ,  D ,  U}

Okay Cancel

{B,D}



Thomas Zeume Iltis: Learning Logic on the Web

5

An Assignment for Propositional Logic (2/2)

(1) Choose a vocabulary

(2) Formalize the scenario

(3) Formalize the conclusion

(4) What now?

(5) Transform into CNF

(6) Apply resolution

Step 6: Propositional resolution

Now use propositional resolution to show that the set of clauses resulting
from the formula above is unsatis:able.

Resolve

{¬B ,  D} {B ,  ¬D} {B ,  ¬U} {B ,  D ,  U} {¬B ,  ¬D}

{B ,  D}

{B}

{¬B}

☐



Congratulations! You have successfully completed this task.



Thomas Zeume Iltis: Learning Logic on the Web

6

An Assignment for First-order Logic
A First-order Exercise
Julia has identified dependencies be-
tween her software packages:
(1) No software package is both a pro-

gram library and a system library.
. . .

(4) Every software package that must
be explicitly installed by the user
depends on at least one program
library directly.

Task: modelling
Provide a first-order formula for each
dependency.



Thomas Zeume Iltis: Learning Logic on the Web

6

An Assignment for First-order Logic
A First-order Exercise
Julia has identified dependencies be-
tween her software packages:
(1) No software package is both a pro-

gram library and a system library.
. . .

(4) Every software package that must
be explicitly installed by the user
depends on at least one program
library directly.

Task: modelling
Provide a first-order formula for each
dependency.

(1) Choose a vocabulary

(2) Formalize the scenario



Thomas Zeume Iltis: Learning Logic on the Web

6

An Assignment for First-order Logic
A First-order Exercise
Julia has identified dependencies be-
tween her software packages:
(1) No software package is both a pro-

gram library and a system library.
. . .

(4) Every software package that must
be explicitly installed by the user
depends on at least one program
library directly.

Task: modelling
Provide a first-order formula for each
dependency.

(1) Choose a vocabulary

(2) Formalize the scenario

Step 1: Choosing a suitable vocabulary

Choose suitable relation, function, and constant symbols, including their

intended meaning, that will allow you to model these dependencies in �rst-

order logic.

Relation symbols

P :

S :

M :

U :

D :

Add symbol

Function symbols

Add symbol

Constant symbols

Add symbol

(u) u is a program library.

(u) u is a system library.

(u) u is a maintainer.

(u) Software package u must be explicitly installed by the user.

(u, v) Software package u depends on another package

v



Thomas Zeume Iltis: Learning Logic on the Web

6

An Assignment for First-order Logic
A First-order Exercise
Julia has identified dependencies be-
tween her software packages:
(1) No software package is both a pro-

gram library and a system library.
. . .

(4) Every software package that must
be explicitly installed by the user
depends on at least one program
library directly.

Task: modelling
Provide a first-order formula for each
dependency.

(1) Choose a vocabulary

(2) Formalize the scenario

Step 1: Choosing a suitable vocabulary

Choose suitable relation, function, and constant symbols, including their

intended meaning, that will allow you to model these dependencies in �rst-

order logic.

Relation symbols

P :

S :

M :

U :

D :

Function symbols

m :

(u) u is a program library.

(u) u is a system library.

(u) u is a maintainer.

(u) Software package u must be explicitly installed by the user.

(u, v) Software package u depends on software package v.

(u) Maintainer of software package u



Thomas Zeume Iltis: Learning Logic on the Web

6

An Assignment for First-order Logic
A First-order Exercise
Julia has identified dependencies be-
tween her software packages:
(1) No software package is both a pro-

gram library and a system library.
. . .

(4) Every software package that must
be explicitly installed by the user
depends on at least one program
library directly.

Task: modelling
Provide a first-order formula for each
dependency.

(1) Choose a vocabulary

(2) Formalize the scenario

Step 2: Describing the dependencies with �rst-order formulas

No software package is both a program library and a system library.

Show more...

System libraries depend only on system libraries.

Program libraries may only depend on system libraries which are not

maintained by the same maintainer.

Every software package that must be explicitly installed by the user depends

on at least one program library directly.

∃u ¬(P(u) ∧ S(u))

Insert a formula

Insert a formula

Insert a formula

 is a program library.

 is a system library.

 is a maintainer.

 Software package  must be explicitly installed by the user.

 Software package  depends on software package .

 Maintainer of software package 

Your vocabulary

P(u): u

S(u): u

M(u): u

U(u): u

D(u, v): u v

m(u): u



Thomas Zeume Iltis: Learning Logic on the Web

6

An Assignment for First-order Logic
A First-order Exercise
Julia has identified dependencies be-
tween her software packages:
(1) No software package is both a pro-

gram library and a system library.
. . .

(4) Every software package that must
be explicitly installed by the user
depends on at least one program
library directly.

Task: modelling
Provide a first-order formula for each
dependency.

(1) Choose a vocabulary

(2) Formalize the scenario

Step 2: Describing the dependencies with �rst-order formulas

No software package is both a program library and a system library.

System libraries depend only on system libraries.

Program libraries may only depend on system libraries which are not

maintained by the same maintainer.

Every software package that must be explicitly installed by the user depends

on at least one program library directly.

 is a program library.

 is a system library.

 is a maintainer.

 Software package  must be explicitly installed by the user.

 Software package  depends on software package .

 Maintainer of software package 

Your vocabulary

P(u): u

S(u): u

M(u): u

U(u): u

D(u, v): u v

m(u): u

∀u ¬(P(u) ∧ S(u))

∀u ∀v [(S(u) ∧ D(u,v)) → S(v)]

∀u ∀v [(P(u) ∧ S(v) ∧ D(u,v)) → ¬(m(u) = m(v))]

∀u [U(u) → ∃v(P(v) ∧ D(u,v))]



Thomas Zeume Iltis: Learning Logic on the Web

7

Iltis: Design ideas
Exercise framework
• Small educational tasks, each with inputs
and outputs
• Educational tasks flexibly combinable into
workflows
á E.g. reasoning workflows, workflows for
testing for equivalence etc.

Feedback framework
• Feedback generators for chunks of feedback
for each educational task
•Generators flexibly combinable into feedback
strategies
á E.g. deep feedback for beginners, less feed-
back for exam preparation

Input: –

Step 1: Choosing a vocabulary
Choose variables and their meaning

Output: Vocabulary σ

Input: Vocabulary σ

Step 2: Constructing formulas
Model scenario and consequence

Output: Formulas ϕ1, . . . , ϕm, ϕ

Input: –

Step 3: Multiple choice
What to do now?

Output: –

Input: ϕ1 ∧ . . . ∧ ϕm ∧ ¬ϕ

Step 4: Transforming formulas
Transform to CNF

Output: Formula ψ into CNF

Input: Formula ψ into CNF

Step 5: Resolution
Apply resolution

Output: –



Thomas Zeume Iltis: Learning Logic on the Web

7

Iltis: Design ideas
Exercise framework
• Small educational tasks, each with inputs
and outputs
• Educational tasks flexibly combinable into
workflows
á E.g. reasoning workflows, workflows for
testing for equivalence etc.

Feedback framework
• Feedback generators for chunks of feedback
for each educational task
•Generators flexibly combinable into feedback
strategies
á E.g. deep feedback for beginners, less feed-
back for exam preparation

Input: –

Step 1: Choosing a vocabulary
Choose variables and their meaning

Output: Vocabulary σ

Input: Vocabulary σ

Step 2: Constructing formulas
Model scenario and consequence

Output: Formulas ϕ1, . . . , ϕm, ϕ

Input: –

Step 3: Multiple choice
What to do now?

Output: –

Input: ϕ1 ∧ . . . ∧ ϕm ∧ ¬ϕ

Step 4: Transforming formulas
Transform to CNF

Output: Formula ψ into CNF

Input: Formula ψ into CNF

Step 5: Resolution
Apply resolution

Output: –



Thomas Zeume Iltis: Learning Logic on the Web

7

Iltis: Design ideas
Exercise framework
• Small educational tasks, each with inputs
and outputs
• Educational tasks flexibly combinable into
workflows
á E.g. reasoning workflows, workflows for
testing for equivalence etc.

Feedback framework
• Feedback generators for chunks of feedback
for each educational task
•Generators flexibly combinable into feedback
strategies
á E.g. deep feedback for beginners, less feed-
back for exam preparation

Input: –

Step 1: Choosing a vocabulary
Choose variables and their meaning

Output: Vocabulary σ

Input: Vocabulary σ

Step 2: Constructing formulas
Model scenario and consequence

Output: Formulas ϕ1, . . . , ϕm, ϕ

Input: –

Step 3: Multiple choice
What to do now?

Output: –

Input: ϕ1 ∧ . . . ∧ ϕm ∧ ¬ϕ

Step 4: Transforming formulas
Transform to CNF

Output: Formula ψ into CNF

Input: Formula ψ into CNF

Step 5: Resolution
Apply resolution

Output: –



Thomas Zeume Iltis: Learning Logic on the Web

8

Iltis: Overview of Educational Tasks – Logic

Task Propositional
logic

Modal
logic

First-order
logic CTL

Choosing a vocabulary ! ! ! !

Constructing formulas ! ! ! !

Transforming formulas ! ! ! �

Demonstrating (un)satisfiability ! ! ! �

Constructing models ! ! ! �

Evaluating formulas ! ! � �

!: supported �: in development



Thomas Zeume Iltis: Learning Logic on the Web

9

Iltis: Overview of Educational Tasks – TCS
Regular Languages
• Construction of
• regular expressions
• deterministic finite automata
• non-deterministic finite automata
• regular grammars

• Specifying words
• Specifying Myhill-Nerode classes
• Proving inequality of languages

Context-Free Languages
• Construction of
• push-down automata
• deterministic push-down automata
• context-free grammars

• Specifying words
• Specifying derivations in context-free grammars
• Proving inequality of languages

Computational Complexity
•Understanding algorithmic problems
• Executing computational reductions
• Specifying computational reduc-
tions between graph-based prob-
lems

General Purpose Tasks
•Multiple choice tasks
• Constructing and manipulating
graphs
• Constructing proofs via drag &
drop (“proof blocks”)
• Sorting items into buckets (e.g.
sorting languages into language
classes)



Part II:

Challenges:
Theory, Practice, Didactics



Thomas Zeume Iltis: Learning Logic on the Web

11

Technological support for formal foundations: Theory and practice
A theory challenge: Algorithmically hard prob-
lems arise when providing
• feedback and advice for students
• learning analytics to instructors

A practical challenge: A large engineering effort
is required, e.g., for
• engineering theoretical results towards imple-
mentation
• ensuring flexibility, extensibility, usability and
maintainability
• . . .

A didactical challenge: Almost no education re-
search on formal foundations of CS
• Collect and publish didactical data
• Identify misconceptions, difficulty generating
factors, . . .



Thomas Zeume Iltis: Learning Logic on the Web

11

Technological support for formal foundations: Theory and practice
A theory challenge: Algorithmically hard prob-
lems arise when providing
• feedback and advice for students
• learning analytics to instructors

A practical challenge: A large engineering effort
is required, e.g., for
• engineering theoretical results towards imple-
mentation
• ensuring flexibility, extensibility, usability and
maintainability
• . . .

A didactical challenge: Almost no education re-
search on formal foundations of CS
• Collect and publish didactical data
• Identify misconceptions, difficulty generating
factors, . . .



Thomas Zeume Iltis: Learning Logic on the Web

11

Technological support for formal foundations: Theory and practice
A theory challenge: Algorithmically hard prob-
lems arise when providing
• feedback and advice for students
• learning analytics to instructors

A practical challenge: A large engineering effort
is required, e.g., for
• engineering theoretical results towards imple-
mentation
• ensuring flexibility, extensibility, usability and
maintainability
• . . .

A didactical challenge: Almost no education re-
search on formal foundations of CS
• Collect and publish didactical data
• Identify misconceptions, difficulty generating
factors, . . .



Thomas Zeume Iltis: Learning Logic on the Web

12A glimpse at the challenges
Feedback for Context-free Grammar Construction

A typical excercise: Design a context-free
grammar for the language

L = {anbn+2 | n ∈ N}

A feedback strategy:
(1) Correctness:

Your grammar is not correct.
(2) Pinpointing mistakes:

(a) Hint at a mistake
Your grammar describes the
language
L = {anbn+1 | n ∈ N}

(b) Hint at problems
It might help to have a look at
the rule B ! bb.

Problem: Already testing correctness is un-
decidable

Testing correctness (for 99% of grammars):
• Identification of wrong grammars:

use heuristics
• Identification of correct grammars:

Solution templates
+ Grammar transformations
+ Isomorphism tests

Pinpointing mistakes
• Idea: Restricted context-free languages
• A language L is bounded, if there are
words w1, . . . , wk s.t.

L ⊆ w∗1 . . . w
∗
k

• Ginsburg/Spanier: Testing equivalence
against bounded languages is decidable
• Also: The wis and exponents can be iden-
tified

•+ a lot of engineering
e.g. to deal with NEXPTIME hardness



Thomas Zeume Iltis: Learning Logic on the Web

12A glimpse at the challenges
Feedback for Context-free Grammar Construction

A typical excercise: Design a context-free
grammar for the language

L = {anbn+2 | n ∈ N}

A feedback strategy:
(1) Correctness:

Your grammar is not correct.
(2) Pinpointing mistakes:

(a) Hint at a mistake
Your grammar describes the
language
L = {anbn+1 | n ∈ N}

(b) Hint at problems
It might help to have a look at
the rule B ! bb.

Problem: Already testing correctness is un-
decidable

Testing correctness (for 99% of grammars):
• Identification of wrong grammars:

use heuristics
• Identification of correct grammars:

Solution templates
+ Grammar transformations
+ Isomorphism tests

Pinpointing mistakes
• Idea: Restricted context-free languages
• A language L is bounded, if there are
words w1, . . . , wk s.t.

L ⊆ w∗1 . . . w
∗
k

• Ginsburg/Spanier: Testing equivalence
against bounded languages is decidable
• Also: The wis and exponents can be iden-
tified

•+ a lot of engineering
e.g. to deal with NEXPTIME hardness



Thomas Zeume Iltis: Learning Logic on the Web

12A glimpse at the challenges
Feedback for Context-free Grammar Construction

A typical excercise: Design a context-free
grammar for the language

L = {anbn+2 | n ∈ N}

A feedback strategy:
(1) Correctness:

Your grammar is not correct.
(2) Pinpointing mistakes:

(a) Hint at a mistake
Your grammar describes the
language
L = {anbn+1 | n ∈ N}

(b) Hint at problems
It might help to have a look at
the rule B ! bb.

Problem: Already testing correctness is un-
decidable

Testing correctness (for 99% of grammars):
• Identification of wrong grammars:

use heuristics
• Identification of correct grammars:

Solution templates
+ Grammar transformations
+ Isomorphism tests

Pinpointing mistakes
• Idea: Restricted context-free languages
• A language L is bounded, if there are
words w1, . . . , wk s.t.

L ⊆ w∗1 . . . w
∗
k

• Ginsburg/Spanier: Testing equivalence
against bounded languages is decidable
• Also: The wis and exponents can be iden-
tified

•+ a lot of engineering
e.g. to deal with NEXPTIME hardness



Thomas Zeume Iltis: Learning Logic on the Web

12A glimpse at the challenges
Feedback for Context-free Grammar Construction

A typical excercise: Design a context-free
grammar for the language

L = {anbn+2 | n ∈ N}

A feedback strategy:
(1) Correctness:

Your grammar is not correct.
(2) Pinpointing mistakes:

(a) Hint at a mistake
Your grammar describes the
language
L = {anbn+1 | n ∈ N}

(b) Hint at problems
It might help to have a look at
the rule B ! bb.

Problem: Already testing correctness is un-
decidable

Testing correctness (for 99% of grammars):
• Identification of wrong grammars:

use heuristics
• Identification of correct grammars:

Solution templates
+ Grammar transformations
+ Isomorphism tests

Pinpointing mistakes
• Idea: Restricted context-free languages
• A language L is bounded, if there are
words w1, . . . , wk s.t.

L ⊆ w∗1 . . . w
∗
k

• Ginsburg/Spanier: Testing equivalence
against bounded languages is decidable
• Also: The wis and exponents can be iden-
tified

•+ a lot of engineering
e.g. to deal with NEXPTIME hardness



Thomas Zeume Iltis: Learning Logic on the Web

12A glimpse at the challenges
Feedback for Context-free Grammar Construction

A typical excercise: Design a context-free
grammar for the language

L = {anbn+2 | n ∈ N}

A feedback strategy:
(1) Correctness:

Your grammar is not correct.
(2) Pinpointing mistakes:

(a) Hint at a mistake
Your grammar describes the
language
L = {anbn+1 | n ∈ N}

(b) Hint at problems
It might help to have a look at
the rule B ! bb.

Problem: Already testing correctness is un-
decidable

Testing correctness (for 99% of grammars):
• Identification of wrong grammars:

use heuristics
• Identification of correct grammars:

Solution templates
+ Grammar transformations
+ Isomorphism tests

Pinpointing mistakes
• Idea: Restricted context-free languages

• A language L is bounded, if there are
words w1, . . . , wk s.t.

L ⊆ w∗1 . . . w
∗
k

• Ginsburg/Spanier: Testing equivalence
against bounded languages is decidable
• Also: The wis and exponents can be iden-
tified

•+ a lot of engineering
e.g. to deal with NEXPTIME hardness



Thomas Zeume Iltis: Learning Logic on the Web

12A glimpse at the challenges
Feedback for Context-free Grammar Construction

A typical excercise: Design a context-free
grammar for the language

L = {anbn+2 | n ∈ N}

A feedback strategy:
(1) Correctness:

Your grammar is not correct.
(2) Pinpointing mistakes:

(a) Hint at a mistake
Your grammar describes the
language
L = {anbn+1 | n ∈ N}

(b) Hint at problems
It might help to have a look at
the rule B ! bb.

Problem: Already testing correctness is un-
decidable

Testing correctness (for 99% of grammars):
• Identification of wrong grammars:

use heuristics
• Identification of correct grammars:

Solution templates
+ Grammar transformations
+ Isomorphism tests

Pinpointing mistakes
• Idea: Restricted context-free languages
• A language L is bounded, if there are
words w1, . . . , wk s.t.

L ⊆ w∗1 . . . w
∗
k

• Ginsburg/Spanier: Testing equivalence
against bounded languages is decidable
• Also: The wis and exponents can be iden-
tified

•+ a lot of engineering
e.g. to deal with NEXPTIME hardness



Thomas Zeume Iltis: Learning Logic on the Web

12A glimpse at the challenges
Feedback for Context-free Grammar Construction

A typical excercise: Design a context-free
grammar for the language

L = {anbn+2 | n ∈ N}

A feedback strategy:
(1) Correctness:

Your grammar is not correct.
(2) Pinpointing mistakes:

(a) Hint at a mistake
Your grammar describes the
language
L = {anbn+1 | n ∈ N}

(b) Hint at problems
It might help to have a look at
the rule B ! bb.

Problem: Already testing correctness is un-
decidable

Testing correctness (for 99% of grammars):
• Identification of wrong grammars:

use heuristics
• Identification of correct grammars:

Solution templates
+ Grammar transformations
+ Isomorphism tests

Pinpointing mistakes
• Idea: Restricted context-free languages
• A language L is bounded, if there are
words w1, . . . , wk s.t.

L ⊆ w∗1 . . . w
∗
k

• Ginsburg/Spanier: Testing equivalence
against bounded languages is decidable

• Also: The wis and exponents can be iden-
tified

•+ a lot of engineering
e.g. to deal with NEXPTIME hardness



Thomas Zeume Iltis: Learning Logic on the Web

12A glimpse at the challenges
Feedback for Context-free Grammar Construction

A typical excercise: Design a context-free
grammar for the language

L = {anbn+2 | n ∈ N}

A feedback strategy:
(1) Correctness:

Your grammar is not correct.
(2) Pinpointing mistakes:

(a) Hint at a mistake
Your grammar describes the
language
L = {anbn+1 | n ∈ N}

(b) Hint at problems
It might help to have a look at
the rule B ! bb.

Problem: Already testing correctness is un-
decidable

Testing correctness (for 99% of grammars):
• Identification of wrong grammars:

use heuristics
• Identification of correct grammars:

Solution templates
+ Grammar transformations
+ Isomorphism tests

Pinpointing mistakes
• Idea: Restricted context-free languages
• A language L is bounded, if there are
words w1, . . . , wk s.t.

L ⊆ w∗1 . . . w
∗
k

• Ginsburg/Spanier: Testing equivalence
against bounded languages is decidable
• Also: The wis and exponents can be iden-
tified

•+ a lot of engineering
e.g. to deal with NEXPTIME hardness



Thomas Zeume Iltis: Learning Logic on the Web

12A glimpse at the challenges
Feedback for Context-free Grammar Construction

A typical excercise: Design a context-free
grammar for the language

L = {anbn+2 | n ∈ N}

A feedback strategy:
(1) Correctness:

Your grammar is not correct.
(2) Pinpointing mistakes:

(a) Hint at a mistake
Your grammar describes the
language
L = {anbn+1 | n ∈ N}

(b) Hint at problems
It might help to have a look at
the rule B ! bb.

Problem: Already testing correctness is un-
decidable

Testing correctness (for 99% of grammars):
• Identification of wrong grammars:

use heuristics
• Identification of correct grammars:

Solution templates
+ Grammar transformations
+ Isomorphism tests

Pinpointing mistakes
• Idea: Restricted context-free languages
• A language L is bounded, if there are
words w1, . . . , wk s.t.

L ⊆ w∗1 . . . w
∗
k

• Ginsburg/Spanier: Testing equivalence
against bounded languages is decidable
• Also: The wis and exponents can be iden-
tified

•+ a lot of engineering
e.g. to deal with NEXPTIME hardness



Thomas Zeume Iltis: Learning Logic on the Web

13A glimpse at the challenges
Feedback for Computational Reductions

A typical excercise: Design a reduction
from VertexCover to FeedbackVertexSet

Challenges
•How to specify reductions?
•How to check correctness and provide
feedback?

Specification language: Cookbook reductions
•Designed for graphical representation, scaf-
folding, algorithmic validation and feedback
•Allows to specify typical building blocks

á node gadgets, edge gadgets, etc.

Correctness and Feedback
•Validation: Is ρ a reduction from P to P ′?

•Theorem: Validating reductions is undecid-
able for “classical” reductions, e.g. if ρ is
some FO-definable reduction

•Theorem: Validating reductions is decidable
for fixed P , P ′ and input ρ if
(a) ρ is some Cookbook reduction, P is arbi-

trary, and P ′ is FO-definable
(b) ρ is some edge gadget reduction, arbitrary

P , and P ′ is MSO-definable



Thomas Zeume Iltis: Learning Logic on the Web

13A glimpse at the challenges
Feedback for Computational Reductions

A typical excercise: Design a reduction
from VertexCover to FeedbackVertexSet

Challenges
•How to specify reductions?
•How to check correctness and provide
feedback?

Specification language: Cookbook reductions
•Designed for graphical representation, scaf-
folding, algorithmic validation and feedback
•Allows to specify typical building blocks

á node gadgets, edge gadgets, etc.

Correctness and Feedback
•Validation: Is ρ a reduction from P to P ′?

•Theorem: Validating reductions is undecid-
able for “classical” reductions, e.g. if ρ is
some FO-definable reduction

•Theorem: Validating reductions is decidable
for fixed P , P ′ and input ρ if
(a) ρ is some Cookbook reduction, P is arbi-

trary, and P ′ is FO-definable
(b) ρ is some edge gadget reduction, arbitrary

P , and P ′ is MSO-definable



Thomas Zeume Iltis: Learning Logic on the Web

13A glimpse at the challenges
Feedback for Computational Reductions

A typical excercise: Design a reduction
from VertexCover to FeedbackVertexSet

Challenges
•How to specify reductions?
•How to check correctness and provide
feedback?

Specification language: Cookbook reductions
•Designed for graphical representation, scaf-
folding, algorithmic validation and feedback
•Allows to specify typical building blocks

á node gadgets, edge gadgets, etc.

Correctness and Feedback
•Validation: Is ρ a reduction from P to P ′?

•Theorem: Validating reductions is undecid-
able for “classical” reductions, e.g. if ρ is
some FO-definable reduction

•Theorem: Validating reductions is decidable
for fixed P , P ′ and input ρ if
(a) ρ is some Cookbook reduction, P is arbi-

trary, and P ′ is FO-definable
(b) ρ is some edge gadget reduction, arbitrary

P , and P ′ is MSO-definable



Thomas Zeume Iltis: Learning Logic on the Web

13A glimpse at the challenges
Feedback for Computational Reductions

A typical excercise: Design a reduction
from VertexCover to FeedbackVertexSet

Challenges
•How to specify reductions?
•How to check correctness and provide
feedback?

Specification language: Cookbook reductions
•Designed for graphical representation, scaf-
folding, algorithmic validation and feedback

•Allows to specify typical building blocks
á node gadgets, edge gadgets, etc.

Correctness and Feedback
•Validation: Is ρ a reduction from P to P ′?

•Theorem: Validating reductions is undecid-
able for “classical” reductions, e.g. if ρ is
some FO-definable reduction

•Theorem: Validating reductions is decidable
for fixed P , P ′ and input ρ if
(a) ρ is some Cookbook reduction, P is arbi-

trary, and P ′ is FO-definable
(b) ρ is some edge gadget reduction, arbitrary

P , and P ′ is MSO-definable



Thomas Zeume Iltis: Learning Logic on the Web

13A glimpse at the challenges
Feedback for Computational Reductions

A typical excercise: Design a reduction
from VertexCover to FeedbackVertexSet

Challenges
•How to specify reductions?
•How to check correctness and provide
feedback?

Specification language: Cookbook reductions
•Designed for graphical representation, scaf-
folding, algorithmic validation and feedback
•Allows to specify typical building blocks

á node gadgets, edge gadgets, etc.

Correctness and Feedback
•Validation: Is ρ a reduction from P to P ′?

•Theorem: Validating reductions is undecid-
able for “classical” reductions, e.g. if ρ is
some FO-definable reduction

•Theorem: Validating reductions is decidable
for fixed P , P ′ and input ρ if
(a) ρ is some Cookbook reduction, P is arbi-

trary, and P ′ is FO-definable
(b) ρ is some edge gadget reduction, arbitrary

P , and P ′ is MSO-definable



Thomas Zeume Iltis: Learning Logic on the Web

13A glimpse at the challenges
Feedback for Computational Reductions

A typical excercise: Design a reduction
from VertexCover to FeedbackVertexSet

Challenges
•How to specify reductions?
•How to check correctness and provide
feedback?

Specification language: Cookbook reductions
•Designed for graphical representation, scaf-
folding, algorithmic validation and feedback
•Allows to specify typical building blocks

á node gadgets, edge gadgets, etc.

Correctness and Feedback
•Validation: Is ρ a reduction from P to P ′?

•Theorem: Validating reductions is undecid-
able for “classical” reductions, e.g. if ρ is
some FO-definable reduction

•Theorem: Validating reductions is decidable
for fixed P , P ′ and input ρ if
(a) ρ is some Cookbook reduction, P is arbi-

trary, and P ′ is FO-definable
(b) ρ is some edge gadget reduction, arbitrary

P , and P ′ is MSO-definable



Thomas Zeume Iltis: Learning Logic on the Web

13A glimpse at the challenges
Feedback for Computational Reductions

A typical excercise: Design a reduction
from VertexCover to FeedbackVertexSet

Challenges
•How to specify reductions?
•How to check correctness and provide
feedback?

Specification language: Cookbook reductions
•Designed for graphical representation, scaf-
folding, algorithmic validation and feedback
•Allows to specify typical building blocks

á node gadgets, edge gadgets, etc.

Correctness and Feedback
•Validation: Is ρ a reduction from P to P ′?

•Theorem: Validating reductions is undecid-
able for “classical” reductions, e.g. if ρ is
some FO-definable reduction

•Theorem: Validating reductions is decidable
for fixed P , P ′ and input ρ if
(a) ρ is some Cookbook reduction, P is arbi-

trary, and P ′ is FO-definable
(b) ρ is some edge gadget reduction, arbitrary

P , and P ′ is MSO-definable



Thomas Zeume Iltis: Learning Logic on the Web

13A glimpse at the challenges
Feedback for Computational Reductions

A typical excercise: Design a reduction
from VertexCover to FeedbackVertexSet

Challenges
•How to specify reductions?
•How to check correctness and provide
feedback?

Specification language: Cookbook reductions
•Designed for graphical representation, scaf-
folding, algorithmic validation and feedback
•Allows to specify typical building blocks

á node gadgets, edge gadgets, etc.

Correctness and Feedback
•Validation: Is ρ a reduction from P to P ′?

•Theorem: Validating reductions is undecid-
able for “classical” reductions, e.g. if ρ is
some FO-definable reduction

•Theorem: Validating reductions is decidable
for fixed P , P ′ and input ρ if
(a) ρ is some Cookbook reduction, P is arbi-

trary, and P ′ is FO-definable
(b) ρ is some edge gadget reduction, arbitrary

P , and P ′ is MSO-definable



Thomas Zeume Iltis: Learning Logic on the Web

14

Summary and perspectives
We have seen:
•A web-based educational support
system for logic and TCS
• Challenges arising when building
such systems

Try the system!

https://iltis.rub.de

In my experience:
Interesting research questions arise
when building educational support
systems for formal foundations

Perspectives
Research
•Theory: Specification languages, Algorithms, . . .
• Engineering: NLP, scalability,. . .
• CS education: Misconceptions, difficulty generat-
ing factors, . . .

Iltis in the wild
•Do you like Iltis?
•We can provide support for adoption
• Let us know!

https://iltis.rub.de
https://iltis.rub.de


Thomas Zeume Iltis: Learning Logic on the Web

14

Summary and perspectives
We have seen:
•A web-based educational support
system for logic and TCS
• Challenges arising when building
such systems

Try the system!

https://iltis.rub.de

In my experience:
Interesting research questions arise
when building educational support
systems for formal foundations

Perspectives
Research
•Theory: Specification languages, Algorithms, . . .
• Engineering: NLP, scalability,. . .
• CS education: Misconceptions, difficulty generat-
ing factors, . . .

Iltis in the wild
•Do you like Iltis?
•We can provide support for adoption
• Let us know!

https://iltis.rub.de
https://iltis.rub.de


Thomas Zeume Iltis: Learning Logic on the Web

14

Summary and perspectives
We have seen:
•A web-based educational support
system for logic and TCS
• Challenges arising when building
such systems

Try the system!

https://iltis.rub.de

In my experience:
Interesting research questions arise
when building educational support
systems for formal foundations

Perspectives
Research
•Theory: Specification languages, Algorithms, . . .
• Engineering: NLP, scalability,. . .
• CS education: Misconceptions, difficulty generat-
ing factors, . . .

Iltis in the wild
•Do you like Iltis?
•We can provide support for adoption
• Let us know!

https://iltis.rub.de
https://iltis.rub.de


Thomas Zeume Iltis: Learning Logic on the Web

14

Summary and perspectives
We have seen:
•A web-based educational support
system for logic and TCS
• Challenges arising when building
such systems

Try the system!

https://iltis.rub.de

In my experience:
Interesting research questions arise
when building educational support
systems for formal foundations

Perspectives
Research
•Theory: Specification languages, Algorithms, . . .
• Engineering: NLP, scalability,. . .
• CS education: Misconceptions, difficulty generat-
ing factors, . . .

Iltis in the wild
•Do you like Iltis?
•We can provide support for adoption
• Let us know!

https://iltis.rub.de
https://iltis.rub.de


Thomas Zeume Iltis: Learning Logic on the Web

15

References
Introduction to Iltis
•Marko Schmellenkamp, Fabian Vehlken, and
Thomas Zeume. Teaching formal foundations of
computer science with Iltis. Bull. EATCS, 2024

Logic
• Tristan Kneisel, Fabian Vehlken, and Thomas
Zeume. Logical modelling in CS education: Bridg-
ing the natural language gap. In Accepted for
AIED 2025, 2025
•Daniel Neider, Leif Sabellek, Johannes Schmidt,
Fabian Vehlken, and Thomas Zeume. Learning
tree pattern transformations. In ICDT 2025, 2025
•Marko Schmellenkamp, Alexandra Latys, and
Thomas Zeume. Discovering and quantifying mis-
conceptions in formal methods using intelligent
tutoring systems. In SIGCSE 2023, 2023
• Gaetano Geck, Artur Ljulin, Sebastian Peter,
Jonas Schmidt, Fabian Vehlken, and Thomas
Zeume. Introduction to Iltis: an interactive, web-
based system for teaching logic. In ITiCSE 2018,
2018

Formal languages
•Marko Schmellenkamp, Thomas Zeume,
Sven Argo, Sandra Kiefer, Cedric Siems,
and Fynn Stebel. Detecting and explaining
(in)equivalence of context-free grammars.
2024
•Marko Schmellenkamp, Dennis Stan-
glmair, Tilman Michaeli, and Thomas
Zeume. Exploring error types in formal
languages among students of upper sec-
ondary education. In Koli Calling 2024,
2024

Reductions
• Julien Grange, Fabian Vehlken, Nils Vort-
meier, and Thomas Zeume. Specification
and automatic verification of computa-
tional reductions. In MFCS 2024, 2024
• Tristan Kneisel, Elias Radtke, Marko
Schmellenkamp, Fabian Vehlken, and
Thomas Zeume. Tool-assisted learning
of computational reductions. In SIGCSE
TS 2025, 2025



Thomas Zeume Iltis: Learning Logic on the Web

Gaetano Geck, Artur Ljulin, Sebastian Peter, Jonas Schmidt, Fabian Vehlken, and Thomas Zeume. Introduc-
tion to Iltis: an interactive, web-based system for teaching logic. In ITiCSE 2018, 2018.

Julien Grange, Fabian Vehlken, Nils Vortmeier, and Thomas Zeume. Specification and automatic verification
of computational reductions. In MFCS 2024, 2024.

Tristan Kneisel, Elias Radtke, Marko Schmellenkamp, Fabian Vehlken, and Thomas Zeume. Tool-assisted
learning of computational reductions. In SIGCSE TS 2025, 2025.

Tristan Kneisel, Fabian Vehlken, and Thomas Zeume. Logical modelling in CS education: Bridging the natural
language gap. In Accepted for AIED 2025, 2025.

Daniel Neider, Leif Sabellek, Johannes Schmidt, Fabian Vehlken, and Thomas Zeume. Learning tree pattern
transformations. In ICDT 2025, 2025.

Marko Schmellenkamp, Alexandra Latys, and Thomas Zeume. Discovering and quantifying misconceptions in
formal methods using intelligent tutoring systems. In SIGCSE 2023, 2023.

Marko Schmellenkamp, Dennis Stanglmair, Tilman Michaeli, and Thomas Zeume. Exploring error types in for-
mal languages among students of upper secondary education. In Koli Calling 2024, 2024.

Marko Schmellenkamp, Fabian Vehlken, and Thomas Zeume. Teaching formal foundations of computer sci-
ence with Iltis. Bull. EATCS, 2024.

Marko Schmellenkamp, Thomas Zeume, Sven Argo, Sandra Kiefer, Cedric Siems, and Fynn Stebel. Detecting
and explaining (in)equivalence of context-free grammars. 2024.


