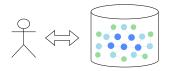

Query Algorithms for Relational Structures based on Homomorphism Counts

Balder ten Cate (FMT 2025)

tC, Dalmau, Kolaitis, Wu (ICDT'24); tC, Kolaitis, Kristjánsson (under submission)


< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Scenario: user wants to test if a (finite) structure satisfies a given property ...

- Is a given digraph triangle-free?
- Does a given digraph contain a directed cycle?

... by asking finitely many **Boolean CQs** $\exists \vec{x} \bigwedge_i \alpha_i$

Scenario: user wants to test if a (finite) structure satisfies a given property ...

- Is a given digraph triangle-free?
- Does a given digraph contain a directed cycle?

... by asking finitely many **Boolean CQs** $\exists \vec{x} \bigwedge_i \alpha_i$

- Non-adaptive (finite list of queries decided upfront) or
- Adaptive (each query may depend on answers to previous queries)

	set semantics (true/false)	Bag semantics (# satisfying assgn)
triangle free?		
∃ directed cycle?		
∃ directed cycle of odd length?		
∃ directed cycle of length 2 ^{odd} ?		
\geq 3 edges?		

	set semantics (true/false)	Bag semantics (# satisfying assgn)
triangle free?	Yes : suffices to ask $\exists xyz(Exy \land Eyz \land Ezx)$	
∃ directed cycle?		
∃ directed cycle of odd length?		
∃ directed cycle of length 2 ^{odd} ?		
\geq 3 edges?		

	set semantics (true/false)	Bag semantics (# satisfying assgn)
triangle free?	Yes : suffices to ask $\exists xyz(Exy \land Eyz \land Ezx)$	Yes: same query
∃ directed cycle?		
∃ directed cycle of odd length?		
∃ directed cycle of length 2 ^{odd} ?		
\geq 3 edges?		

	set semantics (true/false)	Bag semantics (# satisfying assgn)
triangle free?	Yes : suffices to ask $\exists xyz(Exy \land Eyz \land Ezx)$	Yes: same query
∃ directed cycle?	No : requires ∞ many queries (non-FO)	
∃ directed cycle of odd length?	No : requires ∞ many queries (non-FO)	
∃ directed cycle of length 2 ^{odd} ?	No : requires ∞ many queries (non-FO)	
\geq 3 edges?		

	set semantics (true/false)	Bag semantics (# satisfying assgn)
triangle free?	Yes : suffices to ask $\exists xyz(Exy \land Eyz \land Ezx)$	Yes: same query
∃ directed cycle?	No : requires ∞ many queries (non-FO)	
∃ directed cycle of odd length?	No : requires ∞ many queries (non-FO)	
∃ directed cycle of length 2 ^{odd} ?	No : requires ∞ many queries (non-FO)	
\ge 3 edges?	No : not invariant for homomorphic equivalence	

	set semantics (true/false)	Bag semantics (# satisfying assgn)
triangle free?	Yes : suffices to ask $\exists xyz(Exy \land Eyz \land Ezx)$	Yes: same query
∃ directed cycle?	No : requires ∞ many queries (non-FO)	
∃ directed cycle of odd length?	No : requires ∞ many queries (non-FO)	
∃ directed cycle of length 2 ^{odd} ?	No : requires ∞ many queries (non-FO)	
\ge 3 edges?	No : not invariant for homomorphic equivalence	Yes : suffices to ask ∃ <i>xy</i> (<i>Exy</i>)

	set semantics (true/false)	Bag semantics (# satisfying assgn)
triangle free?	Yes : suffices to ask $\exists xyz(Exy \land Eyz \land Ezx)$	Yes: same query
∃ directed cycle?	No : requires ∞ many queries (non-FO)	No: requires ∞ many queries
∃ directed cycle of odd length?	No : requires ∞ many queries (non-FO)	No: requires ∞ many queries
∃ directed cycle of length 2 ^{odd} ?	No : requires ∞ many queries (non-FO)	No: requires ∞ many queries
\geq 3 edges?	No : not invariant for homomorphic equivalence	Yes : suffices to ask $\exists xy(Exy)$

Homomorphism Counts

Let q be a Boolean CQ and A_q its canonical structure.

- The answer to q(A) under the bag semantics is simply the number of homomorphisms h : A_q → A (where the counting is done in the semiring N of natural numbers);
- ▶ The answer to q(A) under the Boolean semantics is simply the number of homomorphisms $h: A_q \to A$ where the counting is done in the Boolean semiring $\mathbb{B} = \{0, 1\}$.

Therefore, we can cast the previous questions purely in terms of homomorphism counts.

Homomorphism Counts

Let q be a Boolean CQ and A_q its canonical structure.

- The answer to q(A) under the bag semantics is simply the number of homomorphisms h : A_q → A (where the counting is done in the semiring N of natural numbers);
- ▶ The answer to q(A) under the Boolean semantics is simply the number of homomorphisms $h: A_q \to A$ where the counting is done in the Boolean semiring $\mathbb{B} = \{0, 1\}$.

Therefore, we can cast the previous questions purely in terms of homomorphism counts.

We will use the notation $hom_{\mathbb{N}}(A, B)$, and $hom_{\mathbb{B}}(A, B)$. We will also write hom(A, B) for $hom_{\mathbb{N}}(A, B)$.

- ▶ hom(K_3 , G) = the number of triangles in graph G (times 6).
- hom (G, K_3) = the number of 3-colorings of graph G.

Homomorphism Count Profiles

Fix an enumeration $AII = \{A_1, A_2, \ldots\}$ of all (finite) structures.

Definition: Let A be a finite structure

- ► The left profile of A is the vector hom(All, A) := (hom(A₁, A), hom(A₂, A), ...).
- ► The right profile of A is the vector hom(A, All) := (hom(A, A₁), hom(A, A₂),...).

Left/Right Profiles and Isomorphism

Lovász's Theorem (1967):

For all structures A and B:

A and B are isomorphic iff hom(AII, A) = hom(AII, B).

Chaudhuri-Vardi Theorem (1993):

For all structures A and B:

A and B are isomorphic iff hom(A, All) = hom(B, All).

Restricted Profiles

Definition: Let $\mathscr{C} = \{B_1, B_2, \ldots\}$ be a set of structures.

- ► The left profile of A restricted to C is the vector hom(C, A) := (hom(B₁, A), hom(B₂, A), ...)
- ► The right profile of A restricted to C is the vector hom(A, C) := (hom(A, B₁), hom(A, B₂), ...)

Each class & gives rise to two equivalence relations:

- $A \equiv_{\mathscr{C}}^{L} B$ if A and B have the same left profile restricted to \mathscr{C} .
- $A \equiv_{\mathscr{C}}^{R} B$ if A and B have the same right profile restricted to \mathscr{C} .

Restricted Homomorphism Count Profiles for Graphs

	left profile	right profile
	restricted to	restricted to
isomorphism	all graphs	all graphs
fractional isomorphism	all trees	
C^k -equivalence ($k \ge 2$)	graphs of tw $< k$	
quantum isomorphism	planar graphs	
:		
chromatic equivalence		all cliques

Dvořák (2010) Dell, Grohe and Rattan (2018) Mančinska and Roberson (2020) Atserias, Kolaitis, and Wu (2021)

. . .

What about finite restrictions of the left (or right) profile?

Query Algorithms (Chen, Flum, Liu, and Xun, 2022)

A left query algorithm over \mathbb{N} for a class \mathscr{C} is an algorithm that determines whether $A \in \mathscr{G}$ by asking finitely many homomorphism count queries $hom_{\mathbb{N}}(B, A)$.

Right query algorithms and query algorithms over $\ensuremath{\mathbb{B}}$ are defined analogously.

The algorithm is non-adaptive if the queries are predetermined (*i*-th query does not depend on the answer to earlier queries).

Fact: The following are equivalent:

- 1. C admits a non-adaptive left query algorithm over \mathbb{N} .
- 2. There is a finite set \mathscr{G} such that $hom_{\mathbb{N}}(\mathscr{G}, G)$ determines whether $G \in \mathcal{C}$.

Query Algorithms

Chen et al. 2022 proposed and studied left/right query algorithms over \mathbb{N} for (undirected) graphs.

Theorem:

- ► Every class of graphs definable by a Boolean combination of universal FO-sentences admits a non-adaptive left query algorithm over N.
- The class of graphs satisfying $\exists x \forall y \neg Exy$ does not.

Theorem:

- Every class of graphs admits an adaptive left 3-query algorithm.
- The same does not hold for right query algorithms. Indeed, some classes of graphs do not admits an adaptive right k-query algorithm for any k.

tC, Dalmau, Kolaitis Wu (2024) studied non-adaptive query algorithms for finite structures over \mathbb{N} and \mathbb{B} .

tC, Dalmau, Kolaitis Wu (2024) studied non-adaptive query algorithms for finite structures over \mathbb{N} and \mathbb{B} .

Fact: Let C be a class of database instances. TFAE:

- 1. C admits a non-adaptive left query algorithm over \mathbb{B} .
- C is definable by a Boolean combination of CQs (in particular, 𝒞 is closed under homomorphic equivalence)

tC, Dalmau, Kolaitis Wu (2024) studied non-adaptive query algorithms for finite structures over \mathbb{N} and \mathbb{B} .

Fact: Let C be a class of database instances. TFAE:

- 1. C admits a non-adaptive left query algorithm over \mathbb{B} .
- C is definable by a Boolean combination of CQs (in particular, 𝒞 is closed under homomorphic equivalence)

tC, Dalmau, Kolaitis Wu (2024) studied non-adaptive query algorithms for finite structures over \mathbb{N} and \mathbb{B} .

Fact: Let C be a class of database instances. TFAE:

- 1. C admits a non-adaptive left query algorithm over \mathbb{B} .
- C is definable by a Boolean combination of CQs (in particular, 𝒞 is closed under homomorphic equivalence)

Theorem: For \mathcal{C} closed under homomorphism equivalence, TFAE:

- 1. C admits a non-adaptive left query algorithm over \mathbb{N} .
- 2. C admits a non-adaptive left query algorithm over \mathbb{B} .
- 3. C is FO-definable (Rossman).

	set semantics (true/false)	Bag semantics (# satisfying assgn)
triangle free?	Yes : suffices to ask $\exists xyz(Exy \land Eyz \land Ezx)$	Yes: same query
∃ directed cycle?	No : requires ∞ many queries (non-FO)	No: requires ∞ many queries
∃ directed cycle of odd length?	No : requires ∞ many queries (non-FO)	No: requires ∞ many queries
∃ directed cycle of length 2 ^{odd} ?	No : requires ∞ many queries (non-FO)	No: requires ∞ many queries
\geq 3 edges?	No : not invariant for homomorphic equivalence	Yes : suffices to ask $\exists xy(Exy)$

Adaptive Query Algorithms for Structures

tC, Kolaitis, Kristjánsson (2025): adaptive query algorithms for finite structures over \mathbb{N} and \mathbb{B} .

Adaptive Query Algorithms for Structures

tC, Kolaitis, Kristjánsson (2025): adaptive query algorithms for finite structures over \mathbb{N} and \mathbb{B} .

Examples:

- Every class admits an adaptive left query algorithm over \mathbb{N} .
- ► the class of digraphs containing a directed cycle admits an adaptive left query algorithm over B.

Adaptive Query Algorithms for Structures

tC, Kolaitis, Kristjánsson (2025): adaptive query algorithms for finite structures over \mathbb{N} and \mathbb{B} .

Examples:

- ► Every class admits an adaptive left query algorithm over N.
- ► the class of digraphs containing a directed cycle admits an adaptive left query algorithm over B.

Results include:

- Not every class of structures admits an adaptive k-query algorithm over N. However, every class of structures admits an adaptive right 2-query algorithm over N.
- ► A finite-domain CSP admits an adaptive left query algorithm over B iff it is FO.
- ► A Datalog program admits an adaptive left query algorithm over B iff it is the intersection of its upper envelopes.

Adaptive case

	set semantics (true/false)	bag semantics (# satisfying assgn)
triangle free?		
∃ directed cycle?		
∃ directed cycle of odd length?		
∃ directed cycle of length 2 ^{odd} ?		
\geq 3 edges?		

Adaptive case

	set semantics (true/false)	bag semantics (# satisfying assgn)
triangle free?	Yes	Yes
∃ directed cycle?	Yes	Yes
∃ directed cycle of odd length?	No (complement of a non-FO CSP)	Yes
∃ directed cycle of length 2 ^{odd} ?	Νο	Yes (but log log <i>n</i> adaptive q's needed)
\ge 3 edges?	No (not invariant for homomorphic equivalence)	Yes

Synopsis

- Homomorphism count vectors capture interesting relaxations of isomorphism.
- "Query algorithms" tests for membership in a class of structures using *finitely many* homomorphism count queries.
- ► We studied the relative power of adaptive/non-adaptive left/right bounded/unbounded query algorithms over B/N

Some open question:

- Gap between log log n and exp(n) bounds on the number of queries needed by adaptive left query algorithms over N
- Bielecki and Van Den Bussche (ICDT'03): more general database interrogation scenario where the user may ask the *number of answers* to a (not necessarily Boolean) CQ.