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(Ob)structural graph theory

Structure Obstruction
Decompositions exposing embedded in the
various properties: considered graph:

— trees or covers, — no decomposition,
— usable by algorithms. — gives

Theorem Template

If G contains no obstruction O, then G has a decomposition D.

Key: notion of embedding.
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t
dist<s(x, y) = Js.3t. dist<1(x, s) A dist<(s, t) A dist<(t, y).

Every red vertex is at distance < 3 from a blue vertex:

blueDominatesRed = Vx. [red(x) = Jy. blue(y) A dist<s(x, y)] -

MSO;: the graph is 3-colorable.
3Col = 4A.9B.3C.ind(A) Aind(B) A ind(C) AVx.[x e AV x € BV x € C].

MSO;,: the graph has a Hamiltonian cycle.
Ham = 3F. [conn(F) A Vx.32e.[e € F Ainc(x, e)]].
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Logic and model-checking

First-Order logic (FO) on graphs:
— We work with vertex-colored graphs (graphs with unary predicates).
— Atomic formulas: x = y, adj(x, y), red(x)
— We can use boolean connectives and quantifiers.

Examples: there is a clique of size k; there is a dominating set of size k.

Extensions:
— MSO;: Also quantification over subsets of vertices.

— MSO,: Also quantification over subsets of vertices and of edges.

— Note: Just MSO over (V, adj(+,-)) and (V W E, inc(-, -)) encodings.

Model-checking problem for logic £
Given a graph G and a sentence p € L, is ¢ true in G?
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Model-checking: complexity
Model checking MSO; and MSO,
— NP-hard already for fixed sentences of MSO; on planar graphs.
— In fpt time f(p, t) - n = O, (n) on graphs of treewidth t.  [Courcelle: 90]

— Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; '10]

— serves a similar role for MSO;.

Model checking FO
— Brute-force: n®Ul#l),
— In general AW[x|-hard, so no fpt running time O,(n°) expected.
— In time O, a(n) on graphs of maximum degree < A.  [scese; 95]

— In time O, y(n) on H-minor-free graphs. = [Flum, Grohe; 01]
Goal: Understand graph classes with tractable FO model-checking.

Precisely: For what classes €, FO-MC can be solved in fpt time O,(n¢)?

This is an excuse to understand those classes.

Michat Pilipczuk Logic and graphs 5/ 26



Treewidth, rankwidth, and compositionality

Michat Pilipczuk Logic and graphs 6/ 26



Treewidth, rankwidth, and compositionality

Treewidth:

bounded

Michat Pilipczuk Logic and graphs 6/ 26



Treewidth, rankwidth, and compositionality
Treewidth: Rankwidth:

bounded

'S
1
1
1
o
1
N v g
1 &
=]
1 .
1 @
1 Qo
1
1
1
v

Michat Pilipczuk Logic and graphs 6/ 26



Treewidth, rankwidth, and compositionality
Treewidth: Rankwidth:
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g-type of a tree computable from g-types of subtrees
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Treewidth, rankwidth, and compositionality
Treewidth: Rankwidth:

bounded

Compositionality:

papunoq

N\
7

Model-checking: Compute types bottom-up

g-type of a tree computable from g-types of subtrees
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Locality

Idea: To understand the g-type of G, it suffices to understand

the g-types of balls of radius r := 209,

Max degree A: Balls are of constant size, computing their types is trivial.
Planar: Ball of radius r has treewidth < 3r, use compositionality.

H-minor-free: Exclude H as a minor. (Planar = {K;, K3 3} minor-free.)

Thm: H-minor-free graphs admit [Robertson, Seymour]

tree decompositions into almost embeddable parts.

2000
DN
fig. by Felix Reidl
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Shallow minors

So far: Results of graph theory — Tractable model-checking

Idea: FO is ... s0 let’s exclude local minors.

H is a depth-d minor of G &
4 model of H in G with branch sets of radius < d

Definition
A graph class € has bounded expansion if for each d € N, there is ¢(d)
s.t. all depth-d minors of graphs from %" have avg degree at most c(d).

Definition

A graph class € is nowhere dense if for each d € N, there is t(d)

s.t. no graph G € % contains the clique K4 as a depth-d minor.
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Sparsity

Intuition: Sparsity gradated by the depth.

— The larger the depth, the more complicated structures are allowed.

% has
% is minor-free

% has bounded expansion

= % has bounded expansion

= % has bounded expansion

= % is nowhere dense

Nowhere dense
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Sparsity

Intuition: Sparsity gradated by the depth.

— The larger the depth, the more complicated structures are allowed.

% has = % has bounded expansion
% is minor-free = % has bounded expansion
% has bounded expansion = % is nowhere dense

This leads to the theory of Sparsity.

Algorithms and Combinatorics 28

S .t
Graphs, Structures, and Algorithms
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% has = % has bounded expansion
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This leads to the theory of Sparsity.
— Tools: coloring numbers, low td colorings,
flatness, neighborhood complexity, ...
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Sparsity

— Applications: problems of character.

Note: We start to speak about graph classes.
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— Algorithms: parameterized, approximation, distributed...

Sparsity
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Theorem [Dvoiak, Kral’, Thomas; ’10]
Fix a class € of bounded expansion.

Then FO model-checking on € can be done in time O,(n).

Theorem [Grohe, Kreutzer, Siebertz; *14]
Fix a nowhere dense class ¥ and € > 0.

Then FO model-checking on € can be done in time O, .(n'**).

Theorem [Dvorak, Kral’, Thomas; *10]

Suppose % is somewhere dense and|subgraph-closed.

Then FO model-checking on & is as hard as on general graphs.

Are we done? Not quite

Examples of classes with tractable FO model-checking:
— complements of planar graphs;

— classes of bounded rankwidth or twin-width.
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Need: Structure theory for graphs tailored to FO.

Embedding notion: Transductions.
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Simple FO interpretations

G is a (colored) graph, ¢(x, y) is a symmetric FO formula.
Define ¢(G) as follows:

vertices of p(G) = vertices of G
edges of o(G) = all uv such that ¢(u, v) holds in G
Examples:

©(x, y) = —adj(x, y) o ¢©(G) is the complement of G
©(x, y) = dist<,y(x, y) o ©(Q) is the square of G

Intuition: ¢(G) can be logically encoded in G.
Obs: Model-checking 1) on ¢(G) reduces to
model-checking ¢[adj — ¢] on G.

Michat Pilipczuk Logic and graphs 12/ 26



FO transductions

Michat Pilipczuk Logic and graphs 13/ 26



FO transductions

A transduction is a mechanism T = (C, @) that takes G and applies:

Michat Pilipczuk Logic and graphs 13/ 26



FO transductions
A transduction is a mechanism T = (C, @) that takes G and applies:

— Color vertices of G using a fixed palette of colors C. G ~~ G

Michat Pilipczuk Logic and graphs 13/ 26



FO transductions

A transduction is a mechanism T = (C, @) that takes G and applies:

— Color vertices of G using a fixed palette of colors C. G ~~ G

— Apply a fixed intepretation ¢. G ~ (G)

Michat Pilipczuk Logic and graphs

13/ 26



FO transductions

A transduction is a mechanism T = (C, @) that takes G and applies:

— Color vertices of G using a fixed palette of colors C. G ~~ G
— Apply a fixed intepretation ¢. G ~ (G)

AN

— Qutput any induced subgraph of ¢(G) and drop colors.

Michat Pilipczuk Logic and graphs

13/ 26



FO transductions

A transduction is a mechanism T = (C, @) that takes G and applies:

— Color vertices of G using a fixed palette of colors C. G ~~ G

— Apply a fixed intepretation ¢. G ~ (G)

— Qutput any induced subgraph of ¢(G) and drop colors.

Note: Coloring makes a formula for output domain unnecessary.

Michat Pilipczuk Logic and graphs

13/ 26



FO transductions

A transduction is a mechanism T = (C, @) that takes G and applies:

— Color vertices of G using a fixed palette of colors C. G ~~ G
— Apply a fixed intepretation ¢. G ~ (G)

AN

— Qutput any induced subgraph of ¢(G) and drop colors.

Note: Coloring makes a formula for output domain unnecessary.

Note: A transduction is a nondeterministic mechanism.

Michat Pilipczuk Logic and graphs

13/ 26



FO transductions

A transduction is a mechanism T = (C, @) that takes G and applies:

— Color vertices of G using a fixed palette of colors C. G ~~ G
— Apply a fixed intepretation ¢. G ~ (G)

AN

— Qutput any induced subgraph of ¢(G) and drop colors.

Note: Coloring makes a formula for output domain unnecessary.
Note: A transduction is a nondeterministic mechanism.

T(G) = all possible outputs of T on G.

Michat Pilipczuk Logic and graphs

13/ 26



FO transductions
A transduction is a mechanism T = (C, @) that takes G and applies:
— Color vertices of G using a fixed palette of colors C. G ~~ G
— Apply a fixed intepretation ¢. G ~ (G)

AN

— Qutput any induced subgraph of ¢(G) and drop colors.

Note: Coloring makes a formula for output domain unnecessary.
Note: A transduction is a nondeterministic mechanism.

T(G) = all possible outputs of T on G.

For a class € and a transduction T, define

T(Cg) = UGE% T(G)

Michat Pilipczuk Logic and graphs 13/ 26



FO transductions
A transduction is a mechanism T = (C, @) that takes G and applies:
— Color vertices of G using a fixed palette of colors C. G ~~ G
— Apply a fixed intepretation ¢. G ~ (G)

AN

— Qutput any induced subgraph of ¢(G) and drop colors.

Note: Coloring makes a formula for output domain unnecessary.
Note: A transduction is a nondeterministic mechanism.

T(G) = all possible outputs of T on G.

For a class € and a transduction T, define
T(¢) = Uger T(C)
Call Z transducible from % if there is a transduction T such that
2 CT(%).

Michat Pilipczuk Logic and graphs 13/ 26



FO transductions
A transduction is a mechanism T = (C, @) that takes G and applies:
— Color vertices of G using a fixed palette of colors C. G ~~ G
— Apply a fixed intepretation ¢. G ~ (G)

AN

— Qutput any induced subgraph of ¢(G) and drop colors.

Note: Coloring makes a formula for output domain unnecessary.
Note: A transduction is a nondeterministic mechanism.

T(G) = all possible outputs of T on G.

For a class € and a transduction T, define
T(¢) = Uger T(C)
Call Z transducible from % if there is a transduction T such that
2 CT(%).

Idea: Graphs from & can be logically encoded in colored graphs from ¢ .

Michat Pilipczuk Logic and graphs 13/ 26



FO transductions
A transduction is a mechanism T = (C, @) that takes G and applies:
— Color vertices of G using a fixed palette of colors C. G ~~ G
— Apply a fixed intepretation ¢. G ~ (G)

AN

— Qutput any induced subgraph of ¢(G) and drop colors.

Note: Coloring makes a formula for output domain unnecessary.
Note: A transduction is a nondeterministic mechanism.

T(G) = all possible outputs of T on G.

For a class € and a transduction T, define
T(¢) = Uger T(C)
Call Z transducible from % if there is a transduction T such that
2 CT(%).

Idea: Graphs from & can be logically encoded in colored graphs from ¢ .

Obs: Transductions closed under composition = Quasi-order on classes
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¢ = {rook graphs} = grids with rows and columns made into cliques.
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Claim: {all bipartite graphs} is transducible from %.
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First row & column using red & , the adjacency matrix using blue.
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¢ = {rook graphs} = grids with rows and columns made into cliques.
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©(x, y) = red(x) and (y) and x, y have a common blue neighbor.
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Transductions: Example

¢ = {rook graphs} = grids with rows and columns made into cliques.

Claim: {all bipartite graphs} is transducible from %.

First row & column using red & , the adjacency matrix using blue.
©(x, y) = red(x) and (y) and x, y have a common blue neighbor.

Drop all blue and white vertices.
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Ideals

Theorem

The following properties of graph classes are closed under transductions:
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Michat Pilipczuk Logic and graphs 15/ 26



Ideals

Theorem

The following properties of graph classes are closed under transductions:
bnd shrubdepth, bnd lin rankwidth,
bnd rankwidth, bnd twin-width.

We say that these are FO ideals.

Michat Pilipczuk Logic and graphs 15/ 26



Ideals

Theorem

The following properties of graph classes are closed under transductions:
bnd shrubdepth, bnd lin rankwidth,
bnd rankwidth, bnd twin-width.

We say that these are FO ideals.

Natural ways of conceiving new ideals:

Michat Pilipczuk Logic and graphs 15/ 26



Ideals

Theorem

The following properties of graph classes are closed under transductions:
bnd shrubdepth, bnd lin rankwidth,
bnd rankwidth, bnd twin-width.

We say that these are FO ideals.

Natural ways of conceiving new ideals:

Obstructions:

If O is a class, then {All classes that do not transduce &'} is an ideal.

Michat Pilipczuk Logic and graphs 15/ 26



Ideals

Theorem

The following properties of graph classes are closed under transductions:
bnd shrubdepth, bnd lin rankwidth,
bnd rankwidth, bnd twin-width.

We say that these are FO ideals.

Natural ways of conceiving new ideals:

Obstructions:

If O is a class, then {All classes that do not transduce &'} is an ideal.

Closure:
If P is a property, then
{All classes transducible from any 4 € P} is an ideal.

We call those classes structurally P.
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Monadic stability and dependence
Def: ¢ is monadically dependent if {all graphs} is not transducible from .

Intuition: Weakest possible restriction, cannot encode all graphs in &
Ex: {rook graphs} is not mon dependent.

Ex: mon dependence for MSO;/MSO, =

Ex: mon dependence for ordered graphs = bnd twin-width. (scodamstr; 22

Direct consequences of characterizations via grid-like obstructions.

Def: ¢ is monadically stable if {all half-graphs} is not transducible from &

b] b2 b3 b4 b5

a, ap as ay as
a; and bj adjacent <= i<
Intuition: Monadically stable classes comprise of orderless graphs.

Concepts studied by Baldwin and Shelah in the 80s.
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Theorem [Adler and Adler, after Podewski and Ziegler; *14 and '79]

Every nowhere dense class % is monadically stable.
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Theorem [Adler and Adler, after Podewski and Ziegler; *14 and '79]
Every nowhere dense class % is monadically stable.
In fact, if € is subgraph-closed, then

% is nowhere dense < % is mon stable & % is mon dependent.

Idea: Mon stability and mon dependence are purely logic notions,

and collapse to nowhere denseness for subgraph-closed classes.

Conjecture
Suppose % is monadically dependent.
Then FO model-checking on & can be solved in time O,(n°).

Theorem [Dreier, Eleftheriadis, Mdhlmann, McCarty, P, Torunczyk; '23]
Suppose % is monadically stable.
Then FO model-checking on € can be solved in time O, (n°).
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Welzl orders Welzl orders
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Patterns under flips Patterns under flips
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Shallow vertex-minors Shallow vertex-minors®
(1): Dreier, Mahlmann, Torunczyk; 23 (4): DEMMCcCPT; 24
(2): Dreier, Mahlmann, Torunczyk; 24 (5): Dreier, Mahlmann, McCarty, P, Torunczyk; unpublished
(3): GMMcCOPPSST; ’23 (6): Buffiere, Kim, Ossona de Mendez; '24
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Flip-flatness and flip-breakability

Flip/Perturbation: Complement the edge relation on a vertex subset.

Def: € is flip-flat if Vd 3k so that VG € € VW C V(G), thereis A C W
of size U(|W|) that can be made d-scattered by applying k flips.

Def: % is flip-breakable if Vd 3k so that VG € € VYW C V(G), there are
A, B C W of size U(|W|), so that dist(A, B) > d after applying k flips.

Theorem [Dreier, Mahlmann, Torunczyk; ’23, °24]
Monadic stability & Flip-flatness
Monadic dependence & Flip-breakability

Fact: Flatness < Breakability < Nowhere denseness,

where flips are replaced with vertex deletions.
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Flipper game
Fixed radius d € N. Played on a graph G.

Two players: Flipper and Connector

Round

Connector picks a ball of radius d.  ~+ The arena is restricted to this ball.

Flipper chooses any vertex subset. ~- A flip is applied to this subset.

Game finishes when the arena gets reduced to one vertex.
Flipper: finish the game quickly Connector: stay alive
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Flipper game and monadic stability
Splitter Game: Same, but Splitter deletes a vertex in every round.

Theorem [Grohe, Kreutzer, Siebertz; *14]
% is nowhere dense. &
For every d € N, there is k € N such that Splitter can win
the radius-d Splitter game in any G € € in < k rounds.

Theorem [Gajarsky, Mdhlmann, McCarty, Ohlmann, P, Przybyszewski, Siebertz, Sokotowski, Torunczyk; ’23]
% is mon stable. &
For every d € N, there is k € N such that Flipper can win
the radius-d Flipper game in any G € % in < k rounds.

Game tree = Shallow decomposition
vertex deletion ~ flip
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Structure of neighborhoods

Theorem [Dreier, Eleftheriadis, Mahlmann, McCarty, P, Torunczyk; '24]
% mon stable. Then for all G € ¥, A C V(G), and € > 0, we have
{N[V]NA: v e V(G)} < O(|A]").
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Theorem [Dreier, Eleftheriadis, Mahlmann, McCarty, P, Torunczyk; '24]
% mon stable. Then for all G € ¥, A C V(G), and € > 0, we have
{N[v]N A: v e V(G)}| < O(|A]").

Theorem [follows from Welzl ’88]
¢ mon stable. Then every G € € admits a vertex ordering o such that:

for every vertex v, N[v] breaks into O.(n%) intervals in o.

Theorem [Dreier, Eleftheriadis, Mahlmann, McCarty, P, Torunczyk; '24]

% mon stable. Then for every G € € and d € N, there is F C 2¥(%) s t.:
— every A € F has weak diameter < 4d,
— every radius-d ball B is contained in some A € F;

— every vertex v belongs to O.(n°) sets A € F.
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Implementing model-checking

Implemented in [Dreier, Mahlmann, Siebertz; '23],
Goal: Check whether Y holds in G. inspired by the strategy from [Grohe, Kreutzer, Siebertz; *14].

Pick d := 29(2(¥)) and consider the radius-d Game on G, viewed by Flipper.

Nodes ~» Induced subgraphs under some flips.
Locality: Type of a node can be computed from types of children.
Idea: Compute the types bottom-up.

Problem: The tree can be as large as n*.

Fix: Restrict the Connector’s moves to radius-d cover.
radius-d Game < Game on radius-d cover < radius-4d Game

Now the game tree has size O.(n'™).
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Forbidden patterns
Theorem [Dreier, Mahlmann, Toruriczyk; *24]
% is mon dependent iff there are no r, k € N s.t. € contains induced:
— a k-flip of every star r-crossing; or
— a k-flip of every clique r-crossing; or
— a k-flip of every half-graph r-crossing; or

— a k-flip of every comparability grid.
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Theorem

% is mon dependent iff there are no r, k € N s.t. € contains induced:

— a k-flip of every star r-crossing; or

Forbidden patterns

— a k-flip of every clique r-crossing; or

— a k-flip of every half-graph r-crossing; or

— a k-flip of every comparability grid.
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Forbidden patterns
Theorem [Dreier, Mahlmann, Toruriczyk; *24]
% is mon dependent iff there are no r, k € N s.t. € contains induced:
— a k-flip of every star r-crossing; or
— a k-flip of every clique r-crossing; or
— a k-flip of every half-graph r-crossing; or

— a k-flip of every comparability grid.
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Cor: ¥ mon independent and hereditary = FO-MC is AW[x]-hard.

Fact: For mon stable: star crossings, clique crossings, and half-graphs.
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— Main hurdle on mon dependent: decomposition.

A lot of other avenues in the theory.
— Obstruction characterizations for ideals.
— Sparsification conjecture. Thanks for attention!
— Fine understanding of the transduction order.

Michat Pilipczuk Logic and graphs 26 / 26



