
Logic through the lens

of structural graph theory

Michał Pilipczuk
University of Warsaw

Finite and Algorithmic Model Theory

Les Houches, France May 26th, 2025 Supported by ERC project BOBR,
ref. no. 948057.



(Ob)structural graph theory

Structure
Decompositions exposing
various properties:

— trees or covers,

— usable by algorithms.

Obstruction
Object embedded in the
considered graph:

— no decomposition,

— gives hardness.

Theorem Template

If G contains no obstruction O, then G has a decomposition D.

Key: notion of embedding.
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Embeddings

Embedding View Theory

(top) minors topological space graph minors theory

induced subgraphs combinatorial structure mess

induced minors

fat minors
metric space coarse theory

vertex-minors

pivot-minors
matrix over F2 vertex-minors theory

??? logical structure ???
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FO and MSO on graphs

x

y
z

x, y, z form a triangle; the graph is triangle-free:

triangle(x, y, z) = adj(x, y) ∧ adj(y, z) ∧ adj(z, x).

triangleFree = ∀x.∀y.∀z. ¬triangle(x, y, z).

s y

t
x

Vertices x and y are at distance ⩽ 3:

dist⩽1(x, y) = (x = y) ∨ adj(x, y)

dist⩽3(x, y) = ∃s.∃t. dist⩽1(x, s) ∧ dist⩽1(s, t) ∧ dist⩽1(t, y).

Every red vertex is at distance ⩽ 3 from a blue vertex:

blueDominatesRed = ∀x. [red(x) ⇒ ∃y. blue(y) ∧ dist⩽3(x, y)] .

MSO1: the graph is 3-colorable.

3Col = ∃A.∃B.∃C. ind(A) ∧ ind(B) ∧ ind(C) ∧ ∀x. [x ∈ A ∨ x ∈ B ∨ x ∈ C].

MSO2: the graph has a Hamiltonian cycle.

Ham = ∃F . [conn(F ) ∧ ∀x.∃!2e. [e ∈ F ∧ inc(x, e)]].
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Logic and model-checking

First-Order logic (FO) on graphs:

− We work with vertex-colored graphs (graphs with unary predicates).

− Atomic formulas: x = y , adj(x, y), red(x)

− We can use boolean connectives and quantifiers.

Examples: there is a clique of size k; there is a dominating set of size k.

Extensions:

− MSO1: Also quantification over subsets of vertices.

− MSO2: Also quantification over subsets of vertices and of edges.

− Note: Just MSO over (V , adj(·, ·)) and (V ⊎ E, inc(·, ·)) encodings.

Model-checking problem for logic L
Given a graph G and a sentence φ ∈ L, is φ true in G?
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Model-checking: complexity

Model checking MSO1 and MSO2

− NP-hard already for fixed sentences of MSO1 on planar graphs.

− In fpt time f (φ, t) · n = Oφ,t(n) on graphs of treewidth t . [Courcelle; ’90]

− Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; ’10]

− Bnd rankwidth serves a similar role for MSO1.

Model checking FO

− Brute-force: nO(∥φ∥).

− In general AW[⋆]-hard, so no fpt running time Oφ(nc) expected.

− In time Oφ,∆(n) on graphs of maximum degree ⩽ ∆. [Seese; ’95]

− In time Oφ,H(n) on H-minor-free graphs. [Flum, Grohe; ’01]

lo
ca
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y

Goal: Understand graph classes with tractable FO model-checking.

Precisely: For what classes C , FO-MC can be solved in fpt time Oφ(nc)?

This is an excuse to understand those classes.
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− In fpt time f (φ, t) · n = Oφ,t(n) on graphs of treewidth t . [Courcelle; ’90]

− Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; ’10]

− Bnd rankwidth serves a similar role for MSO1.

Model checking FO

− Brute-force: nO(∥φ∥).

− In general AW[⋆]-hard, so no fpt running time Oφ(nc) expected.

− In time Oφ,∆(n) on graphs of maximum degree ⩽ ∆. [Seese; ’95]

− In time Oφ,H(n) on H-minor-free graphs. [Flum, Grohe; ’01]
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Treewidth, rankwidth, and compositionality

Treewidth:

bounded

Rankwidth:

bounded

Compositionality:

q-type of a tree computable from q-types of subtrees

Model-checking: Compute types bottom-up
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Locality

Idea: To understand the q-type of G, it suffices to understand

the q-types of balls of radius r := 2O(q).

Max degree ∆: Balls are of constant size, computing their types is trivial.

Planar: Ball of radius r has treewidth ⩽ 3r , use compositionality.

H-minor-free: Exclude H as a minor. (Planar = {K5,K3,3}-minor-free.)

Thm: H-minor-free graphs admit

tree decompositions into almost embeddable parts.

[Robertson, Seymour]

fig. by Felix Reidl
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Shallow minors

So far: Results of graph theory→ Tractable model-checking

Idea: FO is local... so let’s exclude local minors.

H is a depth-d minor of G ⇔

∃ model of H in G with branch sets of radius ⩽ d

Definition

A graph class C has bounded expansion if for each d ∈ N, there is c(d)

s.t. all depth-d minors of graphs from C have avg degree at most c(d).

Definition

A graph class C is nowhere dense if for each d ∈ N, there is t(d)

s.t. no graph G ∈ C contains the clique Kt(d) as a depth-d minor.
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Sparsity

Intuition: Sparsity gradated by the depth.

− The larger the depth, the more complicated structures are allowed.

C has bounded degree ⇒ C has bounded expansion

C isminor-free ⇒ C has bounded expansion

C has bounded expansion ⇒ C is nowhere dense

Star forests

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a 
topological minor

Bounded expansion

Outerplanar

Planar

Bounded 
genus

Linear forests

Bounded degree

Locally bounded 
treewidth

Locally excluding 
a minor

Forests

r

rr

∇∇ Locally bounded 
expansion

Nowhere dense

∇∇
r

ωω

Figure by Felix Reidl

This leads to the theory of Sparsity.

− Tools: coloring numbers, low td colorings,

flatness, neighborhood complexity, ...

− Algorithms: parameterized, approximation, distributed...

− Applications: problems of local character.

Note: We start to speak about graph classes.

Sparsity is a limit property of a class.
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Sparsity and model-checking

Theorem [Dvořák, Král’, Thomas; ’10]

Fix a class C of bounded expansion.

Then FO model-checking on C can be done in time Oφ(n).

Theorem [Grohe, Kreutzer, Siebertz; ’14]

Fix a nowhere dense class C and ε > 0.

Then FO model-checking on C can be done in time Oφ,ε(n1+ε).

Theorem [Dvořák, Král’, Thomas; ’10]

Suppose C is somewhere dense and subgraph-closed.

Then FO model-checking on C is as hard as on general graphs.

Are we done? Not quite

Examples of classes with tractable FO model-checking:

− complements of planar graphs;

− classes of bounded rankwidth or twin-width.
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bnd treewidth

minor-free

bnd treedepth

bnd pathwidth

bnd expansion

nowhere dense

bnd shrubdepth

bnd lin rankwidth

bnd rankwidth

bnd

sparse twin-width bnd twin-width

Need: Structure theory for graphs tailored to FO.

Embedding notion: Transductions.
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Simple FO interpretations

G is a (colored) graph, φ(x, y) is a symmetric FO formula.

Define φ(G) as follows:

vertices of φ(G) = vertices of G

edges of φ(G) = all uv such that φ(u, v) holds in G

Examples:

φ(x, y) = ¬adj(x, y) ⇝ φ(G) is the complement of G

φ(x, y) = dist⩽2(x, y) ⇝ φ(G) is the square of G

φ

Intuition: φ(G) can be logically encoded in G.

Obs: Model-checking ψ on φ(G) reduces to

model-checking ψ[adj → φ] on G.
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FO transductions

A transduction is a mechanism T = (C, φ) that takes G and applies:

− Color vertices of G using a fixed palette of colors C. G ⇝ Ĝ

− Apply a fixed intepretation φ. Ĝ ⇝ φ(Ĝ)

− Output any induced subgraph of φ(Ĝ) and drop colors.

Note: Coloring makes a formula for output domain unnecessary.

Note: A transduction is a nondeterministic mechanism.

T(G) := all possible outputs of T on G.

For a class C and a transduction T, define

T(C ) :=
⋃

G∈C T(G)

Call D transducible from C if there is a transduction T such that

D ⊆ T(C ).

Idea: Graphs from D can be logically encoded in colored graphs from C .

Obs: Transductions closed under composition ⇒Quasi-order on classes
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Note: Coloring makes a formula for output domain unnecessary.

Note: A transduction is a nondeterministic mechanism.

T(G) := all possible outputs of T on G.

For a class C and a transduction T, define

T(C ) :=
⋃

G∈C T(G)

Call D transducible from C if there is a transduction T such that

D ⊆ T(C ).

Idea: Graphs from D can be logically encoded in colored graphs from C .

Obs: Transductions closed under composition ⇒Quasi-order on classes

Michał Pilipczuk Logic and graphs 13 / 26



FO transductions
A transduction is a mechanism T = (C, φ) that takes G and applies:

− Color vertices of G using a fixed palette of colors C. G ⇝ Ĝ
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Transductions: Example

C := {rook graphs} = grids with rows and columns made into cliques.

Claim: {all bipartite graphs} is transducible from C .

First row & column using red & yellow, the adjacency matrix using blue.

φ(x, y) = red(x) and yellow(y) and x, y have a common blue neighbor.

Drop all blue and white vertices.
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Ideals

Theorem

The following properties of graph classes are closed under transductions:

bnd shrubdepth, bnd lin rankwidth,

bnd rankwidth, bnd twin-width.

We say that these are FO ideals.

Natural ways of conceiving new ideals:

Obstructions:

If O is a class, then {All classes that do not transduce O} is an ideal.

Closure:

If P is a property, then

{All classes transducible from any C ∈ P} is an ideal.

We call those classes structurally P .
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Monadic stability and dependence

Def: C ismonadically dependent if {all graphs} is not transducible from C .

Intuition: Weakest possible restriction, cannot encode all graphs in C .

Ex: {rook graphs} is not mon dependent.

Ex: mon dependence for MSO1/MSO2 = bnd rankwidth/treewidth.

Ex: mon dependence for ordered graphs = bnd twin-width. [BGOdMSTT; ’22]

Direct consequences of characterizations via grid-like obstructions.

Def: C ismonadically stable if {all half-graphs} is not transducible from C .

b1

a1

b2

a2

b3

a3

b4

a4

b5

a5

ai and bj adjacent ⇐⇒ i ⩽ j

Intuition: Monadically stable classes comprise of orderless graphs.

Concepts studied by Baldwin and Shelah in the 80s.
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Relation to sparsity

Theorem [Adler and Adler, after Podewski and Ziegler; ’14 and ’79]

Every nowhere dense class C ismonadically stable.

In fact, if C is subgraph-closed, then

C is nowhere dense ⇔ C ismon stable ⇔ C ismon dependent.

Idea: Mon stability and mon dependence are purely logic notions,

and collapse to nowhere denseness for subgraph-closed classes.

Conjecture

Suppose C ismonadically dependent.

Then FO model-checking on C can be solved in time Oφ(nc).

Theorem [Dreier, Eleftheriadis, Mählmann, McCarty, P, Toruńczyk; ’23]

Suppose C ismonadically stable.

Then FO model-checking on C can be solved in time Oφ(n6).
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Tools
mon stable mon dependent

Separators
flip-flatness (1)

(1): Dreier, Mählmann, Toruńczyk; ’23

flip-breakability (2)

(2): Dreier, Mählmann, Toruńczyk; ’24

Decompositions
Flipper Game (3)

(3): GMMcCOPPSST; ’23

?

Structure of neighborhoods

VC density 1 + ε
(4)

(4): DEMMcCPT; ’24

⇒ Welzl orders

⇒ Neighborhood covers

VC density 1 + ε
(5)

(5): Dreier, Mählmann, McCarty, P, Toruńczyk; unpublished

⇒ Welzl orders

⇒ Neighborhood covers

Obstructions
Patterns under flips(2,4) Patterns under flips (2)

Shallow vertex-minors(6) Shallow vertex-minors(6)

(6): Buffière, Kim, Ossona de Mendez; ’24
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Flip-flatness and flip-breakability

Flip/Perturbation: Complement the edge relation on a vertex subset.

Def: C is flip-flat if ∀d ∃k so that ∀G ∈ C ∀W ⊆ V (G), there is A ⊆ W

of size U(|W |) that can be made d-scattered by applying k flips.

k flips

Def: C is flip-breakable if ∀d ∃k so that ∀G ∈ C ∀W ⊆ V (G), there are

A,B ⊆ W of size U(|W |), so that dist(A,B) > d after applying k flips.

k flips

Theorem [Dreier, Mählmann, Toruńczyk; ’23, ’24]

Monadic stability ⇔ Flip-flatness

Monadic dependence ⇔ Flip-breakability

Fact: Flatness⇔ Breakability⇔ Nowhere denseness,

where flips are replaced with vertex deletions.
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Flipper game

Fixed radius d ∈ N. Played on a graph G.

Two players: Flipper and Connector

Round

Connector picks a ball of radius d . ⇝ The arena is restricted to this ball.

Flipper chooses any vertex subset. ⇝ A flip is applied to this subset.

Game finishes when the arena gets reduced to one vertex.

Flipper: finish the game quickly Connector: stay alive
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Flipper game and monadic stability

Splitter Game: Same, but Splitter deletes a vertex in every round.

Theorem [Grohe, Kreutzer, Siebertz; ’14]

C is nowhere dense. ⇔
For every d ∈ N, there is k ∈ N such that Splitter can win

the radius-d Splitter game in any G ∈ C in ⩽ k rounds.

Theorem [Gajarský, Mählmann, McCarty, Ohlmann, P, Przybyszewski, Siebertz, Sokołowski, Toruńczyk; ’23]

C ismon stable. ⇔
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Structure of neighborhoods

Theorem [Dreier, Eleftheriadis, Mählmann, McCarty, P, Toruńczyk; ’24]

C mon stable. Then for all G ∈ C , A ⊆ V (G), and ε > 0, we have

|{N [v] ∩ A : v ∈ V (G)}| ⩽ Oε(|A|1+ε).

Theorem [follows from Welzl ’88]

C mon stable. Then every G ∈ C admits a vertex ordering σ such that:

for every vertex v , N [v] breaks into Oε(nε) intervals in σ.

Theorem [Dreier, Eleftheriadis, Mählmann, McCarty, P, Toruńczyk; ’24]

C mon stable. Then for every G ∈ C and d ∈ N, there is F ⊆ 2V (G) s.t.:

− every A ∈ F has weak diameter ⩽ 4d ;

− every radius-d ball B is contained in some A ∈ F ;

− every vertex v belongs to Oε(nε) sets A ∈ F .
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Implementing model-checking

Goal: Check whether φ holds in G.

Implemented in [Dreier, Mählmann, Siebertz; ’23],
inspired by the strategy from [Grohe, Kreutzer, Siebertz; ’14].

Pick d := 2O(qr(φ)) and consider the radius-d Game on G, viewed by Flipper.

⩽ k

Nodes ⇝ Induced subgraphs under some flips.

Locality: Type of a node can be computed from types of children.

Idea: Compute the types bottom-up.

Problem: The tree can be as large as nk .

Fix: Restrict the Connector’s moves to radius-d cover.

radius-d Game ⩽ Game on radius-d cover ⩽ radius-4d Game

Now the game tree has size Oε(n1+ε).
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Forbidden patterns

Theorem [Dreier, Mählmann, Toruńczyk; ’24]

C ismon dependent iff there are no r, k ∈ N s.t. C contains induced:

− a k-flip of every star r-crossing; or

− a k-flip of every clique r-crossing; or

− a k-flip of every half-graph r-crossing; or

− a k-flip of every comparability grid.

Figure by Niko Mählmann

Cor: C mon independent and hereditary ⇒ FO-MC is AW[⋆]-hard.

Fact: For mon stable: star crossings, clique crossings, and half-graphs.
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Conclusions

Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

− Basic local separability using flips.

Mon stability: being unordered.

− Bounded-depth decompositions by alternating flips and localization.

Goal: Model-checking FO is fpt on mon dependent classes.

− Achieved onmon stable graph classes.

− Main hurdle on mon dependent: decomposition.

A lot of other avenues in the theory.

− Obstruction characterizations for ideals.

− Sparsification conjecture.

− Fine understanding of the transduction order.

Thanks for attention!
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