Logic through the lens of structural graph theory

Michał Pilipczuk

University of Warsaw

Les Houches, France

May 26th, 2025

Established by the European Commission

Supported by ERC project BOBR, ref. no. 948057.

Structure

Decompositions exposing various properties:

- trees or covers,
- usable by **algorithms**.

Structure

Decompositions exposing various properties:

- trees or covers,
- usable by **algorithms**.

Obstruction

Object embedded in the considered graph:

- no decomposition,
- gives hardness.

Structure

Decompositions exposing various properties:

- trees or covers,
- usable by **algorithms**.

Obstruction

Object embedded in the considered graph:

- no decomposition,
- gives hardness.

Theorem Template

If *G* contains no **obstruction** \mathcal{O} , then *G* has a **decomposition** \mathcal{D} .

Structure

Decompositions exposing various properties:

- trees or covers,
- usable by **algorithms**.

Obstruction

Object embedded in the considered graph:

- no decomposition,
- gives hardness.

Theorem Template

If *G* contains no **obstruction** \mathcal{O} , then *G* has a **decomposition** \mathcal{D} .

Key: notion of embedding.

Embedding	View	Theory

Embedding	View	Theory
(top) minors	topological space	graph minors theory

Embedding	View	Theory
(top) minors	topological space	graph minors theory
induced subgraphs	combinatorial structure	mess

Embedding	View	Theory
(top) minors	topological space	graph minors theory
induced subgraphs	combinatorial structure	mess
induced minors fat minors	metric space	coarse theory

Embedding	View	Theory
(top) minors	topological space	graph minors theory
induced subgraphs	combinatorial structure	mess
induced minors fat minors	metric space	coarse theory
vertex-minors pivot-minors	matrix over \mathbb{F}_2	vertex-minors theory

Embedding	View	Theory
(top) minors	topological space	graph minors theory
induced subgraphs	combinatorial structure	mess
induced minors fat minors	metric space	coarse theory
vertex-minors pivot-minors	matrix over \mathbb{F}_2	vertex-minors theory
???	logical structure	???

$$\operatorname{dist}_{\leq 1}(x, y) = (x = y) \lor \operatorname{adj}(x, y) \qquad x \circ \qquad \diamond_t$$
$$\operatorname{dist}_{\leq 3}(x, y) = \exists s. \exists t. \operatorname{dist}_{\leq 1}(x, s) \land \operatorname{dist}_{\leq 1}(s, t) \land \operatorname{dist}_{\leq 1}(t, y).$$

Every red vertex is at distance \leq 3 from a blue vertex:

blueDominatesRed = $\forall x. [red(x) \Rightarrow \exists y. blue(y) \land dist_{\leq 3}(x, y)].$

$$\operatorname{dist}_{\leqslant 1}(x, y) = (x = y) \lor \operatorname{adj}(x, y) \qquad x \circ$$
$$\operatorname{dist}_{\leqslant 3}(x, y) = \exists s. \exists t. \operatorname{dist}_{\leqslant 1}(x, s) \land \operatorname{dist}_{\leqslant 1}(s, t) \land \operatorname{dist}_{\leqslant 1}(t, y).$$

Every red vertex is at distance \leq 3 from a blue vertex:

blueDominatesRed = $\forall x. [red(x) \Rightarrow \exists y. blue(y) \land dist_{\leq 3}(x, y)].$

MSO₁: the graph is 3-colorable.

3Col = $\exists A. \exists B. \exists C. ind(A) \land ind(B) \land ind(C) \land \forall x. [x \in A \lor x \in B \lor x \in C].$

$$\operatorname{dist}_{\leqslant 1}(x, y) = (x = y) \lor \operatorname{adj}(x, y) \qquad x \circ$$
$$\operatorname{dist}_{\leqslant 3}(x, y) = \exists s. \exists t. \operatorname{dist}_{\leqslant 1}(x, s) \land \operatorname{dist}_{\leqslant 1}(s, t) \land \operatorname{dist}_{\leqslant 1}(t, y).$$

Every red vertex is at distance \leq 3 from a blue vertex:

blueDominatesRed = $\forall x. [\operatorname{red}(x) \Rightarrow \exists y. \operatorname{blue}(y) \land \operatorname{dist}_{\leq 3}(x, y)].$

MSO₁: the graph is 3-colorable.

3Col = $\exists A. \exists B. \exists C. ind(A) \land ind(B) \land ind(C) \land \forall x. [x \in A \lor x \in B \lor x \in C].$

MSO₂: the graph has a Hamiltonian cycle.

 $\mathsf{Ham} = \exists F. [\mathsf{conn}(F) \land \forall x. \exists^{!2} e. [e \in F \land \mathsf{inc}(x, e)]].$

Michał Pilipczuk Logic and graphs

First-Order logic (FO) on graphs:

First-Order logic (FO) on graphs:

- We work with **vertex-colored** graphs (graphs with unary predicates).

First-Order logic (FO) on graphs:

- We work with **vertex-colored** graphs (graphs with unary predicates).
- Atomic formulas: x = y, adj(x, y), red(x)

First-Order logic (FO) on graphs:

- We work with **vertex-colored** graphs (graphs with unary predicates).
- Atomic formulas: x = y, adj(x, y), red(x)
- We can use **boolean connectives** and **quantifiers**.

First-Order logic (FO) on graphs:

- We work with **vertex-colored** graphs (graphs with unary predicates).
- Atomic formulas: x = y, adj(x, y), red(x)
- We can use **boolean connectives** and **quantifiers**.

Examples: there is a **clique** of size *k*; there is a **dominating set** of size *k*.

First-Order logic (FO) on graphs:

- We work with **vertex-colored** graphs (graphs with unary predicates).
- Atomic formulas: x = y, adj(x, y), red(x)
- We can use **boolean connectives** and **quantifiers**.

Examples: there is a **clique** of size *k*; there is a **dominating set** of size *k*.

Extensions:

First-Order logic (FO) on graphs:

- We work with **vertex-colored** graphs (graphs with unary predicates).
- Atomic formulas: x = y, adj(x, y), red(x)
- We can use **boolean connectives** and **quantifiers**.

Examples: there is a **clique** of size *k*; there is a **dominating set** of size *k*.

Extensions:

- MSO₁: Also quantification over **subsets** of **vertices**.

First-Order logic (FO) on graphs:

- We work with **vertex-colored** graphs (graphs with unary predicates).
- Atomic formulas: x = y, adj(x, y), red(x)
- We can use **boolean connectives** and **quantifiers**.

Examples: there is a **clique** of size *k*; there is a **dominating set** of size *k*.

Extensions:

- MSO₁: Also quantification over **subsets** of **vertices**.
- MSO₂: Also quantification over **subsets** of **vertices** and of **edges**.

First-Order logic (FO) on graphs:

- We work with **vertex-colored** graphs (graphs with unary predicates).
- Atomic formulas: x = y, adj(x, y), red(x)
- We can use **boolean connectives** and **quantifiers**.

Examples: there is a **clique** of size *k*; there is a **dominating set** of size *k*.

Extensions:

- MSO₁: Also quantification over **subsets** of **vertices**.
- MSO₂: Also quantification over **subsets** of **vertices** and of **edges**.
- Note: Just MSO over $(V, adj(\cdot, \cdot))$ and $(V \uplus E, inc(\cdot, \cdot))$ encodings.

First-Order logic (FO) on graphs:

- We work with **vertex-colored** graphs (graphs with unary predicates).
- Atomic formulas: x = y, adj(x, y), red(x)
- We can use **boolean connectives** and **quantifiers**.

Examples: there is a **clique** of size *k*; there is a **dominating set** of size *k*.

Extensions:

- MSO₁: Also quantification over **subsets** of **vertices**.
- MSO₂: Also quantification over **subsets** of **vertices** and of **edges**.
- Note: Just MSO over $(V, adj(\cdot, \cdot))$ and $(V \uplus E, inc(\cdot, \cdot))$ encodings.

Model-checking problem for logic ${\mathcal L}$

Given a graph *G* and a sentence $\varphi \in \mathcal{L}$, is φ true in *G*?

Model checking MSO₁ and MSO₂

Model checking MSO₁ and MSO₂

- NP-hard already for fixed sentences of MSO_1 on planar graphs.

Model checking MSO₁ and MSO₂

- NP-hard already for fixed sentences of MSO_1 on planar graphs.
- In fpt time $f(\varphi, t) \cdot n = \mathcal{O}_{\varphi, t}(n)$ on graphs of treewidth *t*. [Courcelle; '90]

Model checking MSO₁ and MSO₂

- NP-hard already for fixed sentences of MSO_1 on planar graphs.
- In fpt time $f(\varphi, t) \cdot n = \mathcal{O}_{\varphi, t}(n)$ on graphs of treewidth *t*. [Courcelle; '90]
- Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; '10]

Model checking MSO_1 and MSO_2

- NP-hard already for fixed sentences of MSO_1 on planar graphs.
- In fpt time $f(\varphi, t) \cdot n = \mathcal{O}_{\varphi, t}(n)$ on graphs of treewidth *t*. [Courcelle; '90]
- Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; '10]
- Bnd rankwidth serves a similar role for MSO₁.

Model checking MSO_1 and MSO_2

- NP-hard already for fixed sentences of MSO_1 on planar graphs.
- In fpt time $f(\varphi, t) \cdot n = \mathcal{O}_{\varphi, t}(n)$ on graphs of treewidth *t*. [Courcelle; '90]
- Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; '10]
- Bnd rankwidth serves a similar role for MSO₁.

Model checking FO
Model checking MSO_1 and MSO_2

- NP-hard already for fixed sentences of MSO_1 on planar graphs.
- In fpt time $f(\varphi, t) \cdot n = \mathcal{O}_{\varphi, t}(n)$ on graphs of treewidth *t*. [Courcelle; '90]
- Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; '10]
- Bnd rankwidth serves a similar role for MSO₁.

Model checking FO

- Brute-force: $n^{\mathcal{O}(\|\varphi\|)}$.

Model checking MSO_1 and MSO_2

- NP-hard already for fixed sentences of MSO_1 on planar graphs.
- In fpt time $f(\varphi, t) \cdot n = \mathcal{O}_{\varphi, t}(n)$ on graphs of treewidth *t*. [Courcelle; '90]
- Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; '10]
- Bnd rankwidth serves a similar role for MSO₁.

- Brute-force: $n^{\mathcal{O}(\|\varphi\|)}$.
- In general AW[*]-hard, so no **fpt** running time $\mathcal{O}_{\varphi}(n^{c})$ expected.

Model checking MSO_1 and MSO_2

- NP-hard already for fixed sentences of MSO_1 on planar graphs.
- In fpt time $f(\varphi, t) \cdot n = \mathcal{O}_{\varphi, t}(n)$ on graphs of treewidth *t*. [Courcelle; '90]
- Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; '10]
- Bnd rankwidth serves a similar role for MSO₁.

- Brute-force: $n^{\mathcal{O}(\|\varphi\|)}$.
- In general AW[*]-hard, so no **fpt** running time $\mathcal{O}_{\varphi}(n^{c})$ expected.
- In time $\mathcal{O}_{\varphi,\Delta}(n)$ on graphs of maximum degree $\leq \Delta$. [Seese; '95]

Model checking MSO_1 and MSO_2

- NP-hard already for fixed sentences of MSO_1 on planar graphs.
- In fpt time $f(\varphi, t) \cdot n = \mathcal{O}_{\varphi,t}(n)$ on graphs of treewidth *t*. [Courcelle; '90]
- Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; '10]
- Bnd rankwidth serves a similar role for MSO₁.

- Brute-force: $n^{\mathcal{O}(\|\varphi\|)}$.
- In general AW[*]-hard, so no **fpt** running time $\mathcal{O}_{\varphi}(n^{c})$ expected.
- In time $\mathcal{O}_{\varphi,\Delta}(n)$ on graphs of maximum degree $\leq \Delta$. [Seese; '95]
- In time $\mathcal{O}_{\varphi,H}(n)$ on *H*-minor-free graphs. [Flum, Grohe; '01]

Model checking MSO₁ and MSO₂

- NP-hard already for fixed sentences of MSO₁ on planar graphs.
- In **fpt** time $f(\varphi, t) \cdot n = \mathcal{O}_{\varphi,t}(n)$ on graphs of **treewidth** *t*. [Courcelle; '90]
- **Bnd treewidth** is the limit for such statements. [Kreutzer, Tazari; '10]
- Bnd rankwidth serves a similar role for MSO₁.

- Brute-force: $n^{\mathcal{O}(\|\varphi\|)}$.
- In general AW[*]-hard, so no **fpt** running time $\mathcal{O}_{\varphi}(n^c)$ expected.
- $\begin{array}{l} \text{ In time } \mathcal{O}_{\varphi,\Delta}(n) \text{ on graphs of maximum degree} \leqslant \Delta. \quad \text{[Seese; '95]} \\ \text{ In time } \mathcal{O}_{\varphi,H}(n) \text{ on } H\text{-minor-free graphs.} \quad \text{[Flum, Grohe; '01]} \end{array}$

Model checking MSO_1 and MSO_2

- NP-hard already for fixed sentences of MSO_1 on planar graphs.
- In fpt time $f(\varphi, t) \cdot n = \mathcal{O}_{\varphi, t}(n)$ on graphs of treewidth t. [Courcelle; '90]
- Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; '10]
- Bnd rankwidth serves a similar role for MSO₁.

Model checking FO

- Brute-force: $n^{\mathcal{O}(\|\varphi\|)}$.
- In general AW[*]-hard, so no **fpt** running time $\mathcal{O}_{\varphi}(n^{c})$ expected.
- In time $\mathcal{O}_{arphi,\Delta}(n)$ on graphs of maximum degree $\leqslant \Delta$. [Seese; '95]
 - In time $\mathcal{O}_{\varphi,H}(n)$ on *H*-minor-free graphs. [Flum, Grohe; '01]

ocalit

Model checking MSO_1 and MSO_2

- NP-hard already for fixed sentences of MSO_1 on planar graphs.
- In fpt time $f(\varphi, t) \cdot n = \mathcal{O}_{\varphi, t}(n)$ on graphs of treewidth t. [Courcelle; '90]
- Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; '10]
- Bnd rankwidth serves a similar role for MSO₁.

Model checking FO

- Brute-force: $n^{\mathcal{O}(\|\varphi\|)}$.
- In general AW[*]-hard, so no **fpt** running time $\mathcal{O}_{\varphi}(n^{c})$ expected.
- In time $\mathcal{O}_{arphi,\Delta}(n)$ on graphs of maximum degree $\leqslant \Delta$. [Seese; '95]
- In time $\mathcal{O}_{\varphi,H}(n)$ on *H*-minor-free graphs. [Flum, Grohe; '01]

Goal: Understand graph classes with tractable FO model-checking.

ocalit

Model checking MSO_1 and MSO_2

- NP-hard already for fixed sentences of MSO_1 on planar graphs.
- In fpt time $f(\varphi, t) \cdot n = \mathcal{O}_{\varphi, t}(n)$ on graphs of treewidth *t*. [Courcelle; '90]
- Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; '10]
- Bnd rankwidth serves a similar role for MSO₁.

Model checking FO

- Brute-force: $n^{\mathcal{O}(\|\varphi\|)}$.
- In general AW[*]-hard, so no **fpt** running time $\mathcal{O}_{\varphi}(n^{c})$ expected.
- In time $\mathcal{O}_{arphi,\Delta}(n)$ on graphs of maximum degree $\leqslant \Delta$. [Seese; '95]
- In time $\mathcal{O}_{\varphi,H}(n)$ on *H*-minor-free graphs. [Flum, Grohe; '01]

Goal: Understand graph classes with tractable FO model-checking.

Precisely: For what classes \mathscr{C} , FO-MC can be solved in fpt time $\mathcal{O}_{\varphi}(n^{c})$?

ocality

Model checking MSO_1 and MSO_2

- NP-hard already for fixed sentences of MSO_1 on planar graphs.
- In fpt time $f(\varphi, t) \cdot n = \mathcal{O}_{\varphi, t}(n)$ on graphs of treewidth *t*. [Courcelle; '90]
- Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; '10]
- Bnd rankwidth serves a similar role for MSO₁.

Model checking FO

- Brute-force: $n^{\mathcal{O}(\|\varphi\|)}$.
- In general AW[*]-hard, so no **fpt** running time $\mathcal{O}_{\varphi}(n^{c})$ expected.
- In time $\mathcal{O}_{arphi,\Delta}(n)$ on graphs of maximum degree $\leqslant \Delta$. [Seese; '95]
- In time $\mathcal{O}_{\varphi,H}(n)$ on *H*-minor-free graphs. [Flum, Grohe; '01]

Goal: Understand graph classes with tractable FO model-checking.

Precisely: For what classes \mathscr{C} , FO-MC can be solved in fpt time $\mathcal{O}_{\varphi}(n^{c})$?

This is an **excuse** to understand those classes.

ocalit

Treewidth:

Treewidth:

Rankwidth:

q-type of a tree computable from *q*-types of subtrees

q-type of a tree computable from *q*-types of subtrees

Idea: To understand the *q*-type of *G*, it suffices to understand the *q*-types of balls of radius $r := 2^{\mathcal{O}(q)}$.

Idea: To understand the *q*-type of *G*, it suffices to understand the *q*-types of balls of radius $r := 2^{\mathcal{O}(q)}$.

Max degree Δ : Balls are of constant size, computing their types is trivial.

Idea: To understand the *q*-type of *G*, it suffices to understand the *q*-types of balls of radius $r := 2^{\mathcal{O}(q)}$.

Max degree Δ : Balls are of constant size, computing their types is trivial. **Planar:** Ball of radius *r* has **treewidth** $\leq 3r$, use compositionality.

Idea: To understand the *q*-type of *G*, it suffices to understand the *q*-types of balls of radius $r := 2^{\mathcal{O}(q)}$.

Max degree Δ : Balls are of constant size, computing their types is trivial. **Planar:** Ball of radius *r* has **treewidth** $\leq 3r$, use compositionality. *H*-**minor-free:** Exclude *H* as a minor. (Planar = { $K_5, K_{3,3}$ }-minor-free.)

Idea: To understand the *q*-type of *G*, it suffices to understand the *q*-types of balls of radius $r := 2^{\mathcal{O}(q)}$.

Max degree Δ : Balls are of constant size, computing their types is trivial. **Planar**: Ball of radius *r* has **treewidth** $\leq 3r$, use compositionality. *H*-**minor**-**free**: Exclude *H* as a minor. (Planar = { $K_5, K_{3,3}$ }-minor-free.)

Thm: H-minor-free graphs admit[Robertson, Seymour]tree decompositions into almost embeddable parts.

fig. by Felix Reidl

Michał Pilipczuk

Logic and graphs

So far: Results of graph theory \rightarrow Tractable model-checking

So far: Results of graph theory \rightarrow Tractable model-checking **Idea**: FO is **local**... so let's exclude **local minors**.

So far: Results of graph theory \rightarrow Tractable model-checking **Idea**: FO is **local**... so let's exclude **local minors**.

H is a **depth**-*d* minor of $G \Leftrightarrow$

 \exists model of *H* in *G* with branch sets of radius $\leq d$

So far: Results of graph theory \rightarrow Tractable model-checking **Idea**: FO is **local**... so let's exclude **local minors**.

H is a **depth**-*d* minor of $G \Leftrightarrow$

 \exists model of *H* in *G* with branch sets of radius $\leq d$

So far: Results of graph theory \rightarrow Tractable model-checking Idea: FO is local... so let's exclude local minors.

H is a **depth**-*d* minor of $G \Leftrightarrow$

 \exists model of *H* in *G* with branch sets of radius $\leq d$

Definition

A graph class \mathscr{C} has **bounded expansion** if for each $d \in \mathbb{N}$, there is c(d)

s.t. all depth-d minors of graphs from \mathscr{C} have **avg degree** at most c(d).

Definition

A graph class \mathscr{C} is **nowhere dense** if for each $d \in \mathbb{N}$, there is t(d)s.t. no graph $G \in \mathscr{C}$ contains the clique $K_{t(d)}$ as a depth-*d* minor.

Intuition: Sparsity **gradated** by the depth.

Intuition: Sparsity **gradated** by the depth.

- The larger the depth, the more complicated structures are allowed.

Intuition: Sparsity gradated by the depth.

- The larger the depth, the more complicated structures are allowed.

 \mathscr{C} has **bounded degree** \Rightarrow \mathscr{C} has **bounded expansion**

Intuition: Sparsity gradated by the depth.

- The larger the depth, the more complicated structures are allowed.
 - \mathscr{C} has **bounded degree** \Rightarrow \mathscr{C} has **bounded expansion**
 - \mathscr{C} is **minor-free** \Rightarrow \mathscr{C} has **bounded expansion**

Intuition: Sparsity gradated by the depth.

- The larger the depth, the more complicated structures are allowed.

𝒞 has bounded degree	\Rightarrow	C has bounded expansion
𝒞 is minor-free	\Rightarrow	${\mathscr C}$ has bounded expansion
${\mathscr C}$ has bounded expansion	\Rightarrow	𝒞 is nowhere dense

Intuition: Sparsity gradated by the depth.

- The larger the depth, the more complicated structures are allowed.

Michał Pilipczuk Logic

Intuition: Sparsity gradated by the depth.

- The larger the depth, the more complicated structures are allowed.

𝒞 has bounded degree	\Rightarrow	C has bounded expansion
𝒞 is minor-free	\Rightarrow	${\mathscr C}$ has bounded expansion
${\mathscr C}$ has bounded expansion	\Rightarrow	𝒞 is nowhere dense

Intuition: Sparsity gradated by the depth.

- The larger the depth, the more complicated structures are allowed.

𝒞 has bounded degree	\Rightarrow	${\mathscr C}$ has bounded expansion
𝒞 is minor-free	\Rightarrow	C has bounded expansion
C has bounded expansion	\Rightarrow	𝒞 is nowhere dense

This leads to the theory of **Sparsity**.

Intuition: Sparsity gradated by the depth.

- The larger the depth, the more complicated structures are allowed.

${\mathscr C}$ has bounded degree	\Rightarrow	${\mathscr C}$ has bounded expansion
𝒞 is minor-free	\Rightarrow	${\mathscr C}$ has bounded expansion
C has bounded expansion	\Rightarrow	<i>C</i> is nowhere dense

This leads to the theory of **Sparsity**.

- **Tools:** coloring numbers, low td colorings,

flatness, neighborhood complexity, ...

Intuition: Sparsity gradated by the depth.

- The larger the depth, the more complicated structures are allowed.

${\mathscr C}$ has bounded degree	\Rightarrow	${\mathscr C}$ has bounded expansion
𝒞 is minor-free	\Rightarrow	${\mathscr C}$ has bounded expansion
\mathscr{C} has bounded expansion	\Rightarrow	𝒞 is nowhere dense

This leads to the theory of **Sparsity**.

- **Tools:** coloring numbers, low td colorings,

flatness, neighborhood complexity, ...

- Algorithms: parameterized, approximation, distributed...

Intuition: Sparsity gradated by the depth.

- The larger the depth, the more complicated structures are allowed.

𝒞 has bounded degree	\Rightarrow	${\mathscr C}$ has bounded expansion
𝒞 is minor-free	\Rightarrow	${\mathscr C}$ has bounded expansion
C has bounded expansion	\Rightarrow	𝒞 is nowhere dense

This leads to the theory of **Sparsity**.

- **Tools:** coloring numbers, low td colorings,

flatness, neighborhood complexity, ...

- Algorithms: parameterized, approximation, distributed...
- Applications: problems of local character.

Intuition: Sparsity gradated by the depth.

- The larger the depth, the more complicated structures are allowed.

𝒞 has bounded degree	\Rightarrow	C has bounded expansion
𝒞 is minor-free	\Rightarrow	${\mathscr C}$ has bounded expansion
C has bounded expansion	\Rightarrow	C is nowhere dense

This leads to the theory of **Sparsity**.

- **Tools:** coloring numbers, low td colorings,

flatness, neighborhood complexity, ...

- Algorithms: parameterized, approximation, distributed...
- Applications: problems of local character.

Note: We start to speak about graph classes.

Intuition: Sparsity gradated by the depth.

- The larger the depth, the more complicated structures are allowed.

𝒞 has bounded degree	\Rightarrow	${\mathscr C}$ has bounded expansion
𝒞 is minor-free	\Rightarrow	${\mathscr C}$ has bounded expansion
C has bounded expansion	\Rightarrow	𝒞 is nowhere dense

This leads to the theory of **Sparsity**.

- **Tools:** coloring numbers, low td colorings,

flatness, neighborhood complexity, ...

- Algorithms: parameterized, approximation, distributed...
- Applications: problems of local character.

Note: We start to speak about graph classes.

Sparsity is a **limit property** of a class.

Theorem

[Dvořák, Král', Thomas; '10]

Fix a class \mathscr{C} of **bounded expansion**.

Then FO model-checking on \mathscr{C} can be done in time $\mathcal{O}_{\varphi}(n)$.

Theorem

[Dvořák, Král', Thomas; '10]

Fix a class \mathscr{C} of **bounded expansion**.

Then FO model-checking on \mathscr{C} can be done in time $\mathcal{O}_{\varphi}(n)$.

Theorem

[Grohe, Kreutzer, Siebertz; '14]

Fix a **nowhere dense** class \mathscr{C} and $\varepsilon > 0$.

Then FO model-checking on \mathscr{C} can be done in time $\mathcal{O}_{\varphi,\varepsilon}(n^{1+\varepsilon})$.

Theorem[Dvořák, Král', Thomas; '10]Fix a class \mathscr{C} of bounded expansion.Then FO model-checking on \mathscr{C} can be done in time $\mathcal{O}_{\varphi}(n)$.Theorem[Grohe, Kreutzer, Siebertz; '14]Fix a nowhere dense class \mathscr{C} and $\varepsilon > 0$.Then FO model-checking on \mathscr{C} can be done in time $\mathcal{O}_{\varphi,\varepsilon}(n^{1+\varepsilon})$.Theorem[Dvořák, Král', Thomas; '10]

Suppose *C* is **somewhere dense** and **subgraph-closed**.

Then FO model-checking on $\mathscr C$ is as hard as on general graphs.

Theorem[Dvořák, Král', Thomas; '10]Fix a class \mathscr{C} of bounded expansion.Then FO model-checking on \mathscr{C} can be done in time $\mathcal{O}_{\varphi}(n)$.Theorem[Grohe, Kreutzer, Siebertz; '14]Fix a nowhere dense class \mathscr{C} and $\varepsilon > 0$.Then FO model-checking on \mathscr{C} can be done in time $\mathcal{O}_{\varphi,\varepsilon}(n^{1+\varepsilon})$.Theorem[Dvořák, Král', Thomas; '10]

Suppose *C* is **somewhere dense** and **subgraph-closed**.

Then FO model-checking on $\mathscr C$ is as hard as on general graphs.

Are we done?

Theorem [Dvořák, Král', Thomas; '10] Fix a class \mathscr{C} of **bounded expansion**. Then FO model-checking on \mathscr{C} can be done in time $\mathcal{O}_{\omega}(n)$. Theorem [Grohe, Kreutzer, Siebertz; '14] Fix a **nowhere dense** class \mathscr{C} and $\varepsilon > 0$. Then FO model-checking on \mathscr{C} can be done in time $\mathcal{O}_{\varphi,\varepsilon}(n^{1+\varepsilon})$. Theorem [Dvořák, Král', Thomas; '10] Suppose *C* is **somewhere dense** and **subgraph-closed**. Then FO model-checking on \mathscr{C} is as hard as on general graphs. Are we done? Not quite **Examples** of classes with tractable FO model-checking:

Theorem [Dvořák, Král', Thomas; '10] Fix a class \mathscr{C} of **bounded expansion**. Then FO model-checking on \mathscr{C} can be done in time $\mathcal{O}_{\omega}(n)$. Theorem [Grohe, Kreutzer, Siebertz; '14] Fix a **nowhere dense** class \mathscr{C} and $\varepsilon > 0$. Then FO model-checking on \mathscr{C} can be done in time $\mathcal{O}_{\varphi,\varepsilon}(n^{1+\varepsilon})$. Theorem [Dvořák, Král', Thomas; '10] Suppose *C* is **somewhere dense** and **subgraph-closed**. Then FO model-checking on \mathscr{C} is as hard as on general graphs. Are we done? Not quite **Examples** of classes with tractable FO model-checking: - complements of planar graphs;

Theorem [Dvořák, Král', Thomas; '10] Fix a class \mathscr{C} of **bounded expansion**. Then FO model-checking on \mathscr{C} can be done in time $\mathcal{O}_{\omega}(n)$. Theorem [Grohe, Kreutzer, Siebertz; '14] Fix a **nowhere dense** class \mathscr{C} and $\varepsilon > 0$. Then FO model-checking on \mathscr{C} can be done in time $\mathcal{O}_{\varphi,\varepsilon}(n^{1+\varepsilon})$. Theorem [Dvořák, Král', Thomas; '10] Suppose *C* is **somewhere dense** and **subgraph-closed**. Then FO model-checking on \mathscr{C} is as hard as on general graphs. Are we done? Not quite

Examples of classes with tractable FO model-checking:

- complements of planar graphs;
- classes of bounded rankwidth or twin-width.

G is a (colored) graph, $\varphi(x, y)$ is a symmetric FO formula.

G is a (colored) graph, $\varphi(x, y)$ is a symmetric FO formula. **Define** $\varphi(G)$ as follows:

> vertices of $\varphi(G)$ = vertices of G edges of $\varphi(G)$ = all uv such that $\varphi(u, v)$ holds in G

G is a (colored) graph, $\varphi(x, y)$ is a symmetric FO formula. **Define** $\varphi(G)$ as follows:

> vertices of $\varphi(G)$ = vertices of G edges of $\varphi(G)$ = all uv such that $\varphi(u, v)$ holds in G

Examples:

G is a (colored) graph, $\varphi(x, y)$ is a symmetric FO formula. **Define** $\varphi(G)$ as follows:

> vertices of $\varphi(G)$ = vertices of G edges of $\varphi(G)$ = all uv such that $\varphi(u, v)$ holds in G

Examples:

 $\varphi(x, y) = \neg \operatorname{adj}(x, y) \quad \rightsquigarrow \quad \varphi(G) \text{ is the complement of } G$

G is a (colored) graph, $\varphi(x, y)$ is a symmetric FO formula. **Define** $\varphi(G)$ as follows:

> vertices of $\varphi(G)$ = vertices of G edges of $\varphi(G)$ = all uv such that $\varphi(u, v)$ holds in G

Examples:

G is a (colored) graph, $\varphi(x, y)$ is a symmetric FO formula. **Define** $\varphi(G)$ as follows:

> vertices of $\varphi(G)$ = vertices of G edges of $\varphi(G)$ = all uv such that $\varphi(u, v)$ holds in G

Examples:

Intuition: $\varphi(G)$ can be logically encoded in *G*.

G is a (colored) graph, $\varphi(x, y)$ is a symmetric FO formula. **Define** $\varphi(G)$ as follows:

> vertices of $\varphi(G)$ = vertices of G edges of $\varphi(G)$ = all uv such that $\varphi(u, v)$ holds in G

Examples:

Intuition: $\varphi(G)$ can be logically encoded in *G*. **Obs**: Model-checking ψ on $\varphi(G)$ **reduces** to model-checking $\psi[adj \rightarrow \varphi]$ on *G*.

A **transduction** is a mechanism $T = (C, \varphi)$ that takes *G* and applies:

A **transduction** is a mechanism $T = (C, \varphi)$ that takes *G* and applies:

- **Color** vertices of *G* using a fixed palette of colors *C*. $G \rightsquigarrow \widehat{G}$

A **transduction** is a mechanism $T = (C, \varphi)$ that takes *G* and applies:

- **Color** vertices of *G* using a fixed palette of colors *C*. $G \rightsquigarrow \widehat{G}$

- Apply a fixed intepretation φ . $\widehat{G} \rightsquigarrow \varphi(\widehat{G})$

A **transduction** is a mechanism $T = (C, \varphi)$ that takes *G* and applies:

- **Color** vertices of *G* using a fixed palette of colors *C*. $G \rightsquigarrow \widehat{G}$
- Apply a fixed intepretation φ . $\widehat{G} \rightsquigarrow \varphi(\widehat{G})$
- Output any **induced subgraph** of $\varphi(\widehat{G})$ and drop colors.

A **transduction** is a mechanism $T = (C, \varphi)$ that takes *G* and applies:

- **Color** vertices of *G* using a fixed palette of colors *C*. $G \rightsquigarrow \widehat{G}$
- Apply a fixed intepretation φ . $\widehat{G} \rightsquigarrow \varphi(\widehat{G})$
- Output any **induced subgraph** of $\varphi(\widehat{G})$ and drop colors.

Note: Coloring makes a formula for output domain unnecessary.

A **transduction** is a mechanism $T = (C, \varphi)$ that takes *G* and applies:

- **Color** vertices of *G* using a fixed palette of colors *C*. $G \rightsquigarrow \widehat{G}$
- Apply a fixed intepretation φ . $\widehat{G} \rightsquigarrow \varphi(\widehat{G})$
- Output any **induced subgraph** of $\varphi(\widehat{G})$ and drop colors.

Note: Coloring makes a formula for output domain unnecessary. Note: A transduction is a **nondeterministic** mechanism.

A **transduction** is a mechanism $T = (C, \varphi)$ that takes *G* and applies:

- **Color** vertices of *G* using a fixed palette of colors *C*. $G \rightsquigarrow \widehat{G}$
- Apply a fixed intepretation φ . $\widehat{G} \rightsquigarrow \varphi(\widehat{G})$
- Output any **induced subgraph** of $\varphi(\widehat{G})$ and drop colors.

Note: Coloring makes a formula for output domain unnecessary. Note: A transduction is a **nondeterministic** mechanism.

T(G) := all possible outputs of T on G.

A **transduction** is a mechanism $T = (C, \varphi)$ that takes *G* and applies:

- **Color** vertices of *G* using a fixed palette of colors *C*. $G \rightsquigarrow \widehat{G}$
- Apply a fixed intepretation φ . $\widehat{G} \rightsquigarrow \varphi(\widehat{G})$
- Output any **induced subgraph** of $\varphi(\widehat{G})$ and drop colors.

Note: Coloring makes a formula for output domain unnecessary. Note: A transduction is a **nondeterministic** mechanism.

T(G) := all possible outputs of T on G.

For a class ${\mathscr C}$ and a transduction T, define

 $\mathsf{T}(\mathscr{C}) \coloneqq \bigcup_{G \in \mathscr{C}} \mathsf{T}(G)$

A **transduction** is a mechanism $T = (C, \varphi)$ that takes *G* and applies:

- **Color** vertices of *G* using a fixed palette of colors *C*. $G \rightsquigarrow \widehat{G}$
- Apply a fixed intepretation φ . $\widehat{G} \rightsquigarrow \varphi(\widehat{G})$
- Output any **induced subgraph** of $\varphi(\widehat{G})$ and drop colors.

Note: Coloring makes a formula for output domain unnecessary.Note: A transduction is a nondeterministic mechanism.

T(G) := all possible outputs of T on G.

For a class ${\mathscr C}$ and a transduction T, define

 $\mathsf{T}(\mathscr{C}) \coloneqq \bigcup_{G \in \mathscr{C}} \mathsf{T}(G)$

Call \mathscr{D} transducible from \mathscr{C} if there is a transduction T such that $\mathscr{D} \subseteq T(\mathscr{C}).$

A **transduction** is a mechanism $T = (C, \varphi)$ that takes *G* and applies:

- **Color** vertices of *G* using a fixed palette of colors *C*. $G \rightsquigarrow \widehat{G}$
- Apply a fixed intepretation φ . $\widehat{G} \rightsquigarrow \varphi(\widehat{G})$
- Output any **induced subgraph** of $\varphi(\widehat{G})$ and drop colors.

Note: Coloring makes a formula for output domain unnecessary.Note: A transduction is a nondeterministic mechanism.

T(G) := all possible outputs of T on G.

For a class ${\mathscr C}$ and a transduction T, define

 $\mathsf{T}(\mathscr{C}) \coloneqq \bigcup_{G \in \mathscr{C}} \mathsf{T}(G)$

Call \mathscr{D} transducible from \mathscr{C} if there is a transduction T such that $\mathscr{D} \subseteq T(\mathscr{C}).$

Idea: Graphs from \mathscr{D} can be **logically encoded** in colored graphs from \mathscr{C} .

A **transduction** is a mechanism $T = (C, \varphi)$ that takes *G* and applies:

- **Color** vertices of *G* using a fixed palette of colors *C*. $G \rightsquigarrow \widehat{G}$
- Apply a fixed intepretation φ . $\widehat{G} \rightsquigarrow \varphi(\widehat{G})$
- Output any **induced subgraph** of $\varphi(\widehat{G})$ and drop colors.

Note: Coloring makes a formula for output domain unnecessary.Note: A transduction is a nondeterministic mechanism.

T(G) := all possible outputs of T on G.

For a class ${\mathscr C}$ and a transduction T, define

 $\mathsf{T}(\mathscr{C}) \coloneqq \bigcup_{G \in \mathscr{C}} \mathsf{T}(G)$

Call \mathscr{D} transducible from \mathscr{C} if there is a transduction T such that $\mathscr{D} \subseteq T(\mathscr{C})$.

Idea: Graphs from \mathscr{D} can be **logically encoded** in colored graphs from \mathscr{C} . **Obs:** Transductions closed under composition \Rightarrow **Quasi-order** on classes
$\mathscr{C} := \{ rook graphs \} = grids with rows and columns made into cliques.$

 $\mathscr{C} := \{ rook graphs \} = grids with rows and columns made into cliques.$

Claim: {all bipartite graphs} is transducible from \mathscr{C} .

 $\mathscr{C} := \{ rook graphs \} = grids with rows and columns made into cliques.$

Claim: {all bipartite graphs} is transducible from \mathscr{C} .

First row & column using **red** & **yellow**, the adjacency matrix using **blue**.

 $\mathscr{C} := \{ rook graphs \} = grids with rows and columns made into cliques.$

Claim: {all bipartite graphs} is transducible from \mathscr{C} .

First row & column using **red** & **yellow**, the adjacency matrix using **blue**. $\varphi(x, y) = \text{red}(x)$ and **yellow**(y) and x, y have a common **blue** neighbor.

 $\mathscr{C} := \{ rook graphs \} = grids with rows and columns made into cliques.$

Claim: {all bipartite graphs} is transducible from \mathscr{C} .

First row & column using **red** & **yellow**, the adjacency matrix using **blue**. $\varphi(x, y) = \mathbf{red}(x)$ and **yellow**(y) and x, y have a common **blue** neighbor. Drop all **blue** and **white** vertices.

Logic and graphs

Theorem

The following properties of graph classes are closed under transductions: **bnd shrubdepth**, **bnd lin rankwidth**, **bnd rankwidth**, **bnd twin-width**.

We say that these are **FO ideals**.

Theorem The following properties of graph classes are closed under transductions: bnd shrubdepth, bnd lin rankwidth, bnd rankwidth, bnd twin-width.

We say that these are **FO ideals**.

Natural ways of conceiving new ideals:

TheoremThe following properties of graph classes are closed under transductions:bnd shrubdepth,bnd rankwidth,bnd rankwidth,

We say that these are **FO ideals**.

Natural ways of conceiving new ideals:

Obstructions:

If \mathcal{O} is a class, then {All classes that do **not** transduce \mathcal{O} } is an ideal.

Theorem The following properties of graph classes are closed under transductions: bnd shrubdepth, bnd lin rankwidth, bnd rankwidth, bnd twin-width.

We say that these are **FO ideals**.

Natural ways of conceiving new ideals:

Obstructions:

If \mathscr{O} is a class, then {All classes that do **not** transduce \mathscr{O} } is an ideal.

Closure:

If ${\mathcal P}$ is a property, then

{All classes **transducible** from any $\mathscr{C} \in \mathcal{P}$ } is an ideal. We call those classes **structurally** \mathcal{P} .

Def: \mathscr{C} is **monadically dependent** if {all graphs} is not transducible from \mathscr{C} .

Def: \mathscr{C} is **monadically dependent** if {all graphs} is not transducible from \mathscr{C} .

Def: \mathscr{C} is **monadically dependent** if {all graphs} is not transducible from \mathscr{C} .

Def: \mathscr{C} is **monadically dependent** if {all graphs} is not transducible from \mathscr{C} .

Intuition: Weakest possible restriction, cannot encode all graphs in *C*.Ex: {rook graphs} is not mon dependent.

Def: \mathscr{C} is **monadically dependent** if {all graphs} is not transducible from \mathscr{C} .

- **Ex**: {rook graphs} is **not mon dependent**.
- **Ex**: mon dependence for MSO₁/MSO₂ = **bnd rankwidth/treewidth**.

Def: \mathscr{C} is **monadically dependent** if {all graphs} is not transducible from \mathscr{C} .

- **Ex**: {rook graphs} is **not mon dependent**.
- **Ex**: mon dependence for MSO₁/MSO₂ = **bnd rankwidth/treewidth**.
- **Ex**: mon dependence for ordered graphs = **bnd twin-width**. [BGOdMSTT; '22]

Def: \mathscr{C} is **monadically dependent** if {all graphs} is not transducible from \mathscr{C} .

- **Ex**: {rook graphs} is **not mon dependent**.
- **Ex**: mon dependence for MSO₁/MSO₂ = **bnd rankwidth/treewidth**.
- **Ex**: mon dependence for ordered graphs = **bnd twin-width**. [BGOdMSTT; '22]
- Direct consequences of characterizations via grid-like obstructions.

Def: \mathscr{C} is **monadically dependent** if {all graphs} is not transducible from \mathscr{C} .

Intuition: Weakest possible restriction, cannot encode all graphs in \mathscr{C} .

- **Ex**: {rook graphs} is **not mon dependent**.
- **Ex**: mon dependence for MSO₁/MSO₂ = **bnd rankwidth/treewidth**.
- **Ex**: mon dependence for ordered graphs = **bnd twin-width**. [BGOdMSTT; '22]
- Direct consequences of characterizations via grid-like obstructions.

Def: \mathscr{C} is **monadically stable** if {all half-graphs} is not transducible from \mathscr{C} .

Def: \mathscr{C} is **monadically dependent** if {all graphs} is not transducible from \mathscr{C} .

Intuition: Weakest possible restriction, cannot encode all graphs in \mathscr{C} .

- **Ex**: {rook graphs} is **not mon dependent**.
- **Ex**: mon dependence for MSO₁/MSO₂ = **bnd rankwidth/treewidth**.
- **Ex**: mon dependence for ordered graphs = **bnd twin-width**. [BGOdMSTT; '22]
- Direct consequences of characterizations via grid-like obstructions.

Def: \mathscr{C} is **monadically stable** if {all half-graphs} is not transducible from \mathscr{C} .

Def: \mathscr{C} is **monadically dependent** if {all graphs} is not transducible from \mathscr{C} .

Intuition: Weakest possible restriction, cannot encode all graphs in \mathscr{C} .

- **Ex**: {rook graphs} is **not mon dependent**.
- **Ex**: mon dependence for MSO₁/MSO₂ = **bnd rankwidth/treewidth**.
- **Ex**: mon dependence for ordered graphs = **bnd twin-width**. [BGOdMSTT; '22]
- Direct consequences of characterizations via grid-like obstructions.

Def: \mathscr{C} is **monadically stable** if {all half-graphs} is not transducible from \mathscr{C} .

 a_i and b_j adjacent $\iff i \leqslant j$

Intuition: Monadically stable classes comprise of orderless graphs.

Def: \mathscr{C} is **monadically dependent** if {all graphs} is not transducible from \mathscr{C} .

Intuition: Weakest possible restriction, cannot encode all graphs in \mathscr{C} .

- **Ex**: {rook graphs} is **not mon dependent**.
- **Ex**: mon dependence for MSO₁/MSO₂ = **bnd rankwidth/treewidth**.
- **Ex**: mon dependence for ordered graphs = **bnd twin-width**. [BGOdMSTT; '22]
- Direct consequences of characterizations via grid-like obstructions.

Def: \mathscr{C} is **monadically stable** if {all half-graphs} is not transducible from \mathscr{C} .

 a_i and b_j adjacent $\iff i \leqslant j$

Intuition: Monadically stable classes comprise of orderless graphs.

Concepts studied by Baldwin and Shelah in the 80s.

Michał Pilipczuk

Logic and graphs

Theorem

[Adler and Adler, after Podewski and Ziegler; '14 and '79]

Every nowhere dense class \mathscr{C} is monadically stable.

 Theorem
 [Adler and Adler, after Podewski and Ziegler; '14 and '79]

 Every nowhere dense class 𝒞 is monadically stable.
 In fact, if 𝒞 is subgraph-closed, then

 𝒞 is nowhere dense
 ⇔
 𝔅 is mon stable
 ⇔
 𝔅 is mon dependent.

Theorem[Adler and Adler, after Podewski and Ziegler; '14 and '79]Every nowhere dense class \mathscr{C} is monadically stable.In fact, if \mathscr{C} is subgraph-closed, then \mathscr{C} is nowhere dense $\Leftrightarrow \mathscr{C}$ is mon stable $\Leftrightarrow \mathscr{C}$ is mon dependent.Idea: Mon stability and mon dependence are purely logic notions,

and collapse to **nowhere denseness** for subgraph-closed classes.

Theorem [Adler and Adler, after Podewski and Ziegler; '14 and '79] Every nowhere dense class \mathscr{C} is monadically stable. In fact, if \mathscr{C} is **subgraph-closed**, then \mathscr{C} is nowhere dense $\Leftrightarrow \mathscr{C}$ is mon stable $\Leftrightarrow \mathscr{C}$ is mon dependent. Idea: Mon stability and mon dependence are purely logic notions, and collapse to **nowhere denseness** for subgraph-closed classes. Conjecture Suppose \mathscr{C} is monadically dependent. Then FO model-checking on \mathscr{C} can be solved in time $\mathcal{O}_{\omega}(n^{c})$.

Theorem [Adler and Adler, after Podewski and Ziegler; '14 and '79] Every nowhere dense class \mathscr{C} is monadically stable. In fact, if \mathscr{C} is **subgraph-closed**, then \mathscr{C} is nowhere dense $\Leftrightarrow \mathscr{C}$ is mon stable $\Leftrightarrow \mathscr{C}$ is mon dependent. Idea: Mon stability and mon dependence are purely logic notions, and collapse to **nowhere denseness** for subgraph-closed classes. Conjecture Suppose \mathscr{C} is monadically dependent. Then FO model-checking on \mathscr{C} can be solved in time $\mathcal{O}_{\omega}(n^{c})$. Theorem [Dreier, Eleftheriadis, Mählmann, McCarty, P, Toruńczyk; '23] Suppose \mathscr{C} is **monadically stable**. Then FO model-checking on \mathscr{C} can be solved in time $\mathcal{O}_{\omega}(n^6)$.

(2): Toruńczyk; '23 Dreier, Toruńczyk; '25⁺

(1): Bonnet, Kim, Thomassé, Watrigant; '20

(2): Toruńczyk; '23 Dreier, Toruńczyk; '25⁺

(1): Bonnet, Kim, Thomassé, Watrigant; '20
(2): Toruńczyk; '23 Dreier, Toruńczyk; '25⁺

(1): Bonnet, Kim, Thomassé, Watrigant; '20
(2): Toruńczyk; '23 Dreier, Toruńczyk; '25⁺

(1): Bonnet, Kim, Thomassé, Watrigant; '20
(3): Nešetřil, Ossona de Mendez, Rabinovich, Siebertz; '20
(2): Toruńczyk; '23 Dreier, Toruńczyk; '25⁺

(1): Bonnet, Kim, Thomassé, Watrigant; '20
(3): Nešetřil, Ossona de Mendez, Rabinovich, Siebertz; '20
(2): Toruńczyk; '23 Dreier, Toruńczyk; '25⁺
(4): Nešetřil, Ossona de Mendez, P, Rabinovich, Siebertz; '21

(1): Bonnet, Kim, Thomassé, Watrigant; '20
(3): Nešetřil, Ossona de Mendez, Rabinovich, Siebertz; '20
(2): Toruńczyk; '23 Dreier, Toruńczyk; '25⁺
(4): Nešetřil, Ossona de Mendez, P, Rabinovich, Siebertz; '21
(5): Gajarský, P, Toruńczyk; '22

Michał Pilipczuk

Logic and graphs

(1): Bonnet, Kim, Thomassé, Watrigant; '20
(2): Toruńczyk; '23 Dreier, Toruńczyk; '25⁺
(5): Gajarský, P, Toruńczyk; '22
(3): Nešetřil, Ossona de Mendez, Rabinovich, Siebertz; '20
(4): Nešetřil, Ossona de Mendez, P, Rabinovich, Siebertz; '21
(6): Braunfeld, Nešetřil, Ossona de Mendez, Siebertz; '24⁺

Michał Pilipczuk Lo

Logic and graphs

(1): Bonnet, Kim, Thomassé, Watrigant; '20
(2): Toruńczyk; '23 Dreier, Toruńczyk; '25⁺
(5): Gajarský, P, Toruńczyk; '22
(3): Nešetřil, Ossona de Mendez, Rabinovich, Siebertz; '20
(4): Nešetřil, Ossona de Mendez, P, Rabinovich, Siebertz; '21
(6): Braunfeld, Nešetřil, Ossona de Mendez, Siebertz; '24⁺

Michał Pilipczuk Lo

Logic and graphs

mon stable

mon dependent

Tools			
mon stable		mon dependent	
flip-flatness ⁽¹⁾	Separators	flip-breakability ⁽²⁾	
(1): Dreier, Mählmann, Toruńczyk; 'ź (2): Dreier, Mählmann, Toruńczyk; 'ź	23 24		

Tools			
mon stable		mon depender	nt
flip-flatness ⁽¹⁾	Separa	ators flip-breakability	y ⁽²⁾
Flipper Game ⁽³⁾	Decompo	ositions ?	
(1): Dreier, Mählmann, Toruńczy (2): Dreier, Mählmann, Toruńczy (3): GMMcCOPPSST; '23	k; '23 k; '24		

Tools			
mon stable	mon dependent		
flip-flatness ⁽¹⁾ Sepa	r ators flip-breakability ⁽²⁾		
Flipper Game ⁽³⁾ Decomp	ositions ?		
Structure of n	eighborhoods		
VC density 1 + ε ⁽⁴⁾			
\Rightarrow Welzl orders			
\Rightarrow Neighborhood covers			
 (1): Dreier, Mählmann, Toruńczyk; '23 (2): Dreier, Mählmann, Toruńczyk; '24 (3): GMMcCOPPSST; '23 			

Michał Pilipczuk

Logic and graphs

Tools			
mon stable	mon dependent		
flip-flatness ⁽¹⁾ Separ	r ators flip-breakability ⁽²⁾		
Flipper Game ⁽³⁾ Decomp	ositions ?		
Structure of n	eighborhoods		
VC density 1 + $arepsilon$ ⁽⁴⁾	VC density $1 + \varepsilon^{(5)}$		
\Rightarrow Welzl orders	\Rightarrow Welzl orders		
\Rightarrow Neighborhood covers	\Rightarrow Neighborhood covers		
(1): Dreier, Mählmann, Toruńczyk; '23 ((2): Dreier, Mählmann, Toruńczyk; '24 ((3): GMMcCOPPSST; '23	4): DEMMcCPT; '24 5): Dreier, Mählmann, McCarty, P, Toruńczyk; unpublished		

Michał Pilipczuk

Tools			
mon stable	mon dependent		
flip-flatness ⁽¹⁾ Separ	ators flip-breakability ⁽²⁾		
Flipper Game ⁽³⁾ Decomp	ositions ?		
Structure of neighborhoods			
$\begin{array}{l} VC \ density \ 1 + \varepsilon \end{array}^{(4)} \\ \Rightarrow \qquad Welzl \ orders \end{array}$	VC density $1 + \varepsilon^{(5)}$ \Rightarrow Welzl orders		
\Rightarrow Neighborhood covers	\Rightarrow Neighborhood covers		
Patterns under flips ^(2,4) Obstru Shallow vertex-minors ⁽⁶⁾	Patterns under flips ⁽²⁾ Shallow vertex-minors ⁽⁶⁾		
 (1): Dreier, Mählmann, Toruńczyk; '23 (2): Dreier, Mählmann, Toruńczyk; '24 (3): GMMcCOPPSST; '23 	4): DEMMcCPT; '24 5): Dreier, Mählmann, McCarty, P, Toruńczyk; unpublished 6): Buffière, Kim, Ossona de Mendez; '24		
Michał Pilipczuk	Logic and graphs 19 / 26		

Flip/Perturbation: Complement the edge relation on a vertex subset.

Flip/Perturbation: Complement the edge relation on a vertex subset.

Def: \mathscr{C} is **flip-flat** if $\forall d \exists k$ so that $\forall G \in \mathscr{C} \forall W \subseteq V(G)$, there is $A \subseteq W$ of size $\mathcal{U}(|W|)$ that can be made *d*-scattered by applying *k* flips.

Flip/Perturbation: Complement the edge relation on a vertex subset.

Def: \mathscr{C} is **flip-flat** if $\forall d \exists k$ so that $\forall G \in \mathscr{C} \forall W \subseteq V(G)$, there is $A \subseteq W$ of size $\mathcal{U}(|W|)$ that can be made *d*-scattered by applying *k* flips.

Def: \mathscr{C} is **flip-breakable** if $\forall d \exists k$ so that $\forall G \in \mathscr{C} \forall W \subseteq V(G)$, there are $A, B \subseteq W$ of size $\mathcal{U}(|W|)$, so that dist(A, B) > d after applying k flips.

Flip/Perturbation: Complement the edge relation on a vertex subset.

Def: \mathscr{C} is **flip-flat** if $\forall d \exists k$ so that $\forall G \in \mathscr{C} \forall W \subseteq V(G)$, there is $A \subseteq W$ of size $\mathcal{U}(|W|)$ that can be made *d*-scattered by applying *k* flips.

Def: \mathscr{C} is **flip-breakable** if $\forall d \exists k$ so that $\forall G \in \mathscr{C} \forall W \subseteq V(G)$, there are $A, B \subseteq W$ of size $\mathcal{U}(|W|)$, so that dist(A, B) > d after applying k flips.

Theorem			[Dreier, Mählmann, Toruńczyk; '23, '24]
	Monadic stability	\Leftrightarrow	Flip-flatness
	Monadic dependence	\Leftrightarrow	Flip-breakability

Flip/Perturbation: Complement the edge relation on a vertex subset.

Def: \mathscr{C} is **flip-flat** if $\forall d \exists k$ so that $\forall G \in \mathscr{C} \forall W \subseteq V(G)$, there is $A \subseteq W$ of size $\mathcal{U}(|W|)$ that can be made *d*-scattered by applying *k* flips.

Def: \mathscr{C} is **flip-breakable** if $\forall d \exists k$ so that $\forall G \in \mathscr{C} \forall W \subseteq V(G)$, there are $A, B \subseteq W$ of size $\mathcal{U}(|W|)$, so that dist(A, B) > d after applying k flips.

Theorem			[Dreier, Mählmann, Toruńczyk; '23, '24]
	Monadic stability	\Leftrightarrow	Flip-flatness
	Monadic dependence	\Leftrightarrow	Flip-breakability

Fact: Flatness \Leftrightarrow Breakability \Leftrightarrow Nowhere denseness,

where **flips** are replaced with **vertex deletions**.

Michał Pilipczuk

Logic and graphs

Fixed radius $d \in \mathbb{N}$. Played on a graph *G*.

Fixed radius $d \in \mathbb{N}$. Played on a graph *G*.

Two players: Flipper and **Connector**

Fixed radius $d \in \mathbb{N}$. Played on a graph *G*.

Two players: Flipper and **Connector**

Round

Connector picks a ball of radius *d*.

Fixed radius $d \in \mathbb{N}$. Played on a graph *G*.

Two players: Flipper and **Connector**

Round

Connector picks a ball of radius d. \rightarrow The arena is **restricted** to this ball.

Fixed radius $d \in \mathbb{N}$. Played on a graph *G*.

Two players: Flipper and Connector

Round

Connector picks a ball of radius d. \rightarrow The arena is **restricted** to this ball. **Flipper** chooses any **vertex subset**.

Fixed radius $d \in \mathbb{N}$. Played on a graph *G*.

Two players: Flipper and Connector

Round

Fixed radius $d \in \mathbb{N}$. Played on a graph *G*.

Two players: Flipper and Connector

Round

Fixed radius $d \in \mathbb{N}$. Played on a graph *G*.

Two players: Flipper and Connector

Round

Fixed radius $d \in \mathbb{N}$. Played on a graph *G*.

Two players: Flipper and Connector

Round

Fixed radius $d \in \mathbb{N}$. Played on a graph *G*.

Two players: Flipper and Connector

Round

Fixed radius $d \in \mathbb{N}$. Played on a graph *G*.

Two players: Flipper and Connector

Round

Connector picks a ball of radius d. \rightsquigarrow The arena is **restricted** to this ball.**Flipper** chooses any **vertex subset**. \rightsquigarrow A **flip** is applied to this subset.

Game **finishes** when the arena gets reduced to **one vertex**.

Fixed radius $d \in \mathbb{N}$. Played on a graph *G*.

Two players: Flipper and Connector

Round

Connector picks a ball of radius d. \rightsquigarrow The arena is **restricted** to this ball.**Flipper** chooses any **vertex subset**. \rightsquigarrow A **flip** is applied to this subset.

Game finishes when the arena gets reduced to one vertex.Flipper: finish the game quicklyConnector: stay alive

Michał Pilipczuk

Logic and graphs

Splitter Game: Same, but Splitter deletes a vertex in every round.

Splitter Game: Same, but Splitter deletes a vertex in every round.

Theorem

[Grohe, Kreutzer, Siebertz; '14]

 \mathscr{C} is nowhere dense. \Leftrightarrow

For every $d \in \mathbb{N}$, there is $k \in \mathbb{N}$ such that **Splitter** can win

the radius-*d* Splitter game in any $G \in \mathscr{C}$ in $\leq k$ rounds.

Splitter Game: Same, but Splitter deletes a vertex in every round.

Theorem

[Grohe, Kreutzer, Siebertz; '14]

 \mathscr{C} is **nowhere dense**. \Leftrightarrow For every $d \in \mathbb{N}$, there is $k \in \mathbb{N}$ such that **Splitter** can win the radius-*d* Splitter game in any $G \in \mathscr{C}$ in $\leqslant k$ rounds.

Theorem [Gajarský, Mählmann, McCarty, Ohlmann, P, Przybyszewski, Siebertz, Sokołowski, Toruńczyk; '23] \mathscr{C} is **mon stable**. \Leftrightarrow For every $d \in \mathbb{N}$, there is $k \in \mathbb{N}$ such that **Flipper** can win the radius-*d* Flipper game in any $G \in \mathscr{C}$ in $\leq k$ rounds.

Splitter Game: Same, but Splitter deletes a vertex in every round.

Theorem

[Grohe, Kreutzer, Siebertz; '14]

 \mathscr{C} is **nowhere dense**. \Leftrightarrow For every $d \in \mathbb{N}$, there is $k \in \mathbb{N}$ such that **Splitter** can win the radius-*d* Splitter game in any $G \in \mathscr{C}$ in $\leq k$ rounds.

Splitter Game: Same, but Splitter deletes a vertex in every round.

Theorem

[Grohe, Kreutzer, Siebertz; '14]

 \mathscr{C} is **nowhere dense**. \Leftrightarrow For every $d \in \mathbb{N}$, there is $k \in \mathbb{N}$ such that **Splitter** can win the radius-*d* Splitter game in any $G \in \mathscr{C}$ in $\leqslant k$ rounds.

Structure of neighborhoods

Structure of neighborhoods

Theorem[Dreier, Eleftheriadis, Mählmann, McCarty, P, Toruńczyk; '24] \mathscr{C} mon stable. Then for all $G \in \mathscr{C}$, $A \subseteq V(G)$, and $\varepsilon > 0$, we have $|\{N[v] \cap A : v \in V(G)\}| \leq \mathcal{O}_{\varepsilon}(|A|^{1+\varepsilon}).$

Structure of neighborhoods

Theorem

[Dreier, Eleftheriadis, Mählmann, McCarty, P, Toruńczyk; '24]

 \mathscr{C} mon stable. Then for all $G \in \mathscr{C}$, $A \subseteq V(G)$, and $\varepsilon > 0$, we have $|\{N[v] \cap A \colon v \in V(G)\}| \leq \mathcal{O}_{\varepsilon}(|A|^{1+\varepsilon}).$

Theorem

[follows from Welzl '88]

 \mathscr{C} mon stable. Then every $G \in \mathscr{C}$ admits a vertex ordering σ such that: for every vertex v, N[v] breaks into $\mathcal{O}_{\varepsilon}(n^{\varepsilon})$ intervals in σ .
Structure of neighborhoods

Theorem

[Dreier, Eleftheriadis, Mählmann, McCarty, P, Toruńczyk; '24]

 \mathscr{C} mon stable. Then for all $G \in \mathscr{C}$, $A \subseteq V(G)$, and $\varepsilon > 0$, we have $|\{N[v] \cap A \colon v \in V(G)\}| \leq \mathcal{O}_{\varepsilon}(|A|^{1+\varepsilon}).$

Theorem

[follows from Welzl '88]

 \mathscr{C} mon stable. Then every $G \in \mathscr{C}$ admits a vertex ordering σ such that: for every vertex v, N[v] breaks into $\mathcal{O}_{\varepsilon}(n^{\varepsilon})$ intervals in σ .

Theorem

[Dreier, Eleftheriadis, Mählmann, McCarty, P, Toruńczyk; '24]

- \mathscr{C} mon stable. Then for every $G \in \mathscr{C}$ and $d \in \mathbb{N}$, there is $\mathcal{F} \subseteq 2^{V(G)}$ s.t.:
 - every $A \in \mathcal{F}$ has weak diameter $\leq 4d$;
 - every radius-*d* ball *B* is contained in some $A \in \mathcal{F}$;
 - every vertex *v* belongs to $\mathcal{O}_{\varepsilon}(n^{\varepsilon})$ sets $A \in \mathcal{F}$.

Goal: Check whether φ holds in *G*.

Implemented in [Dreier, Mählmann, Siebertz; '23], inspired by the strategy from [Grohe, Kreutzer, Siebertz; '14].

Goal: Check whether φ holds in *G*.

Implemented in [Dreier, Mählmann, Siebertz; '23], inspired by the strategy from [Grohe, Kreutzer, Siebertz; '14].

Goal: Check whether φ holds in *G*.

Implemented in [Dreier, Mählmann, Siebertz; '23], inspired by the strategy from [Grohe, Kreutzer, Siebertz; '14].

Pick $d := 2^{\mathcal{O}(qr(\varphi))}$ and consider the radius-*d* Game on *G*, viewed by Flipper.

Goal: Check whether φ holds in *G*.

Implemented in [Dreier, Mählmann, Siebertz; '23], inspired by the strategy from [Grohe, Kreutzer, Siebertz; '14].

Pick $d := 2^{\mathcal{O}(qr(\varphi))}$ and consider the radius-*d* Game on *G*, viewed by Flipper.

Goal: Check whether φ holds in *G*.

Nodes

Implemented in [Dreier, Mählmann, Siebertz; '23], inspired by the strategy from [Grohe, Kreutzer, Siebertz; '14].

Pick $d := 2^{\mathcal{O}(qr(\varphi))}$ and consider the radius-*d* Game on *G*, viewed by Flipper.

Locality: Type of a node can be computed from types of children.

Goal: Check whether φ holds in *G*. Implemented in [Dreier, Mählmann, Siebertz; '23], inspired by the strategy from [Grohe, Kreutzer, Siebertz; '14].

Pick $d := 2^{\mathcal{O}(qr(\varphi))}$ and consider the radius-*d* Game on *G*, viewed by Flipper.

Locality: Type of a node can be computed from **types** of children. **Idea:** Compute the types bottom-up.

Nodes

Goal: Check whether φ holds in *G*.

Implemented in [Dreier, Mählmann, Siebertz; '23], inspired by the strategy from [Grohe, Kreutzer, Siebertz; '14].

Pick $d := 2^{\mathcal{O}(qr(\varphi))}$ and consider the radius-*d* Game on *G*, viewed by Flipper.

Nodes \rightsquigarrow Induced subgraphs under some flips.

Locality: Type of a node can be computed from **types** of children.

Idea: Compute the types bottom-up.

Problem: The tree can be as large as n^k .

Implemented in [Dreier, Mählmann, Siebertz; '23]. **Goal:** Check whether φ holds in *G*.

inspired by the strategy from [Grohe, Kreutzer, Siebertz; '14].

Pick $d := 2^{\mathcal{O}(qr(\varphi))}$ and consider the radius-*d* Game on *G*, viewed by Flipper.

Induced subgraphs under some flips. Nodes $\sim \rightarrow$

Locality: Type of a node can be computed from types of children. **Idea:** Compute the types bottom-up.

Problem: The tree can be as large as n^k .

Fix: Restrict the Connector's moves to radius-*d* cover.

Goal: Check whether φ holds in *G*. Implemented in [Dreier, Mählmann, Siebertz; '23], inspired by the strategy from [Grohe, Kreutzer, Siebertz; '14].

Pick $d := 2^{\mathcal{O}(qr(\varphi))}$ and consider the radius-*d* Game on *G*, viewed by Flipper.

Nodes \rightsquigarrow Induced subgraphs under some flips.

Locality: Type of a node can be computed from **types** of children. **Idea:** Compute the types bottom-up.

Problem: The tree can be as large as n^k .

Fix: Restrict the Connector's moves to radius-*d* cover. radius-*d* Game \leq Game on radius-*d* cover \leq radius-4*d* Game

Goal: Check whether φ holds in *G*.

Implemented in [Dreier, Mählmann, Siebertz; '23], inspired by the strategy from [Grohe, Kreutzer, Siebertz; '14].

Pick $d := 2^{\mathcal{O}(qr(\varphi))}$ and consider the radius-*d* Game on *G*, viewed by Flipper.

Nodes \rightsquigarrow Induced subgraphs under some flips.

Locality: Type of a node can be computed from **types** of children. **Idea:** Compute the types bottom-up.

Problem: The tree can be as large as n^k .

Fix: Restrict the Connector's moves to radius-*d* cover.

radius-*d* Game \leq Game on radius-*d* cover \leq radius-4*d* Game Now the game tree has size $\mathcal{O}_{\varepsilon}(n^{1+\varepsilon})$.

Theorem

[Dreier, Mählmann, Toruńczyk; '24]

 \mathscr{C} is **mon dependent** iff there are no $r, k \in \mathbb{N}$ s.t. \mathscr{C} contains induced:

- a k-flip of every star r-crossing; or
- a *k*-flip of every clique *r*-crossing; or
- a k-flip of every half-graph r-crossing; or
- a *k*-flip of every comparability grid.

Figure by Niko Mählmann

Theorem

[Dreier, Mählmann, Toruńczyk; '24]

 \mathscr{C} is **mon dependent** iff there are no $r, k \in \mathbb{N}$ s.t. \mathscr{C} contains induced:

- a k-flip of every star r-crossing; or
- a *k*-flip of every clique *r*-crossing; or
- a k-flip of every half-graph r-crossing; or
- a k-flip of every comparability grid.

Figure by Niko Mählmann

Cor: \mathscr{C} **mon independent** and **hereditary** \Rightarrow FO-MC is AW[\star]-hard.

Theorem

[Dreier, Mählmann, Toruńczyk; '24]

 \mathscr{C} is **mon dependent** iff there are no $r, k \in \mathbb{N}$ s.t. \mathscr{C} contains induced:

- a k-flip of every star r-crossing; or
- a k-flip of every clique r-crossing; or
- a k-flip of every half-graph r-crossing; or
- a *k*-flip of every comparability grid.

Figure by Niko Mählmann

Cor: \mathscr{C} **mon independent** and **hereditary** \Rightarrow FO-MC is AW[*]-hard. **Fact:** For **mon stable**: star crossings, clique crossings, and half-graphs.

Transductions: a model-theoretic notion of embedding for classes.

Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

- Basic local separability using flips.

Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

- Basic local separability using flips.

Mon stability: being unordered.

Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

- Basic local separability using flips.

Mon stability: being unordered.

- Bounded-depth decompositions by alternating flips and localization.

Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

- Basic local separability using flips.

Mon stability: being unordered.

- Bounded-depth decompositions by alternating flips and localization.

Goal: Model-checking FO is fpt on mon dependent classes.

Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

- Basic local separability using flips.

Mon stability: being unordered.

- Bounded-depth decompositions by alternating flips and localization.

Goal: Model-checking FO is fpt on mon dependent classes.

- Achieved on **mon stable** graph classes.

Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

- Basic local separability using flips.

Mon stability: being unordered.

- Bounded-depth decompositions by alternating flips and localization.

Goal: Model-checking FO is fpt on mon dependent classes.

- Achieved on **mon stable** graph classes.
- Main hurdle on **mon dependent**: **decomposition**.

Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

- Basic local separability using flips.

Mon stability: being unordered.

- Bounded-depth decompositions by alternating flips and localization.

Goal: Model-checking FO is fpt on mon dependent classes.

- Achieved on **mon stable** graph classes.
- Main hurdle on **mon dependent**: **decomposition**.

A lot of other **avenues** in the theory.

Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

- Basic local separability using flips.

Mon stability: being unordered.

- Bounded-depth decompositions by alternating flips and localization.

Goal: Model-checking FO is fpt on mon dependent classes.

- Achieved on **mon stable** graph classes.
- Main hurdle on **mon dependent**: **decomposition**.

A lot of other avenues in the theory.

- Obstruction characterizations for ideals.

Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

- Basic local separability using flips.

Mon stability: being unordered.

- Bounded-depth decompositions by alternating flips and localization.

Goal: Model-checking FO is fpt on mon dependent classes.

- Achieved on **mon stable** graph classes.
- Main hurdle on **mon dependent**: **decomposition**.

A lot of other **avenues** in the theory.

- Obstruction characterizations for ideals.
- Sparsification conjecture.

Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

- Basic local separability using flips.

Mon stability: being unordered.

- Bounded-depth decompositions by alternating flips and localization.

Goal: Model-checking FO is fpt on mon dependent classes.

- Achieved on **mon stable** graph classes.
- Main hurdle on **mon dependent**: **decomposition**.

A lot of other **avenues** in the theory.

- Obstruction characterizations for ideals.
- Sparsification conjecture.
- Fine understanding of the transduction order.

Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

- Basic local separability using flips.

Mon stability: being unordered.

- Bounded-depth decompositions by alternating flips and localization.

Goal: Model-checking FO is fpt on mon dependent classes.

- Achieved on **mon stable** graph classes.
- Main hurdle on **mon dependent**: **decomposition**.

A lot of other **avenues** in the theory.

- Obstruction characterizations for ideals.
- Sparsification conjecture.
- Fine understanding of the transduction order.

Thanks for attention!