Logic through the lens
of structural graph theory

Michat Pilipczuk

University of Warsaw

* X %
* *
* *
* *
et L
Finite and Algorithmic Model Theory S
Les Houches, France May 26, 2025 Supported by ERC project BOBR,

ref. no. 948057.

(Ob)structural graph theory

Michat Pilipczuk Logic and graphs 1/ 26

(Ob)structural graph theory

Structure

Decompositions exposing
various properties:

— trees or covers,

— usable by algorithms.

Michat Pilipczuk Logic and graphs 1/ 26

(Ob)structural graph theory

Structure Obstruction
Decompositions exposing embedded in the
various properties: considered graph:

— trees or covers, — no decomposition,
— usable by algorithms. — gives

Michat Pilipczuk Logic and graphs 1/ 26

(Ob)structural graph theory

Structure Obstruction
Decompositions exposing embedded in the
various properties: considered graph:

— trees or covers, — no decomposition,
— usable by algorithms. — gives

Theorem Template

If G contains no obstruction O, then G has a decomposition D.

Michat Pilipczuk Logic and graphs 1/ 26

(Ob)structural graph theory

Structure Obstruction
Decompositions exposing embedded in the
various properties: considered graph:

— trees or covers, — no decomposition,
— usable by algorithms. — gives

Theorem Template

If G contains no obstruction O, then G has a decomposition D.

Key: notion of embedding.

Michat Pilipczuk Logic and graphs 1/ 26

Embeddings

Theory

View

Embedding

2/ 26

Logic and graphs

Michat Pilipczuk

Embeddings

Embedding View Theory

(top) minors topological space graph minors theory

Michat Pilipczuk Logic and graphs 2/ 26

Embedding

(top) minors

induced subgraphs

Embeddings

View
topological space

combinatorial structure

Michat Pilipczuk Logic and graphs

Theory

graph minors theory

mess

2/ 26

Embedding

(top) minors

induced subgraphs

induced minors

fat minors

Embeddings

View
topological space
combinatorial structure

metric space

Michat Pilipczuk Logic and graphs

Theory

graph minors theory

mess

coarse theory

2/ 26

Embeddings

Embedding View Theory
(top) minors topological space graph minors theory
induced subgraphs combinatorial structure mess

induced minors . ,
. metric space : coarse theory
fat minors '

vertex-minors . : .
. . matrix over F, : vertex-minors theory
pivot-minors '

Michat Pilipczuk Logic and graphs 2/ 26

Embedding

(top) minors

induced subgraphs

induced minors

fat minors

vertex-minors

pivot-minors

272

Embeddings

View

topological space

combinatorial structure

metric space

matrix over F,

logical structure

Michat Pilipczuk

Logic and graphs

Theory

graph minors theory

mess

coarse theory

vertex-minors theory

277

2/ 26

FO and MSO on graphs

Michat Pilipczuk Logic and graphs 3/ 26

FO and MSO on graphs

X

X, y, z form a triangle; the graph is triangle-free:
triangle(x, y, z) = adj(x, y) A adj(y, z) A adj(z, x). =z cﬁ) ,
triangleFree = Vx.Vy.Vz. —triangle(x, y, z).

Michat Pilipczuk Logic and graphs 3/ 26

FO and MSO on graphs

X, y, z form a triangle; the graph is triangle-free:
triangle(x, y, z) = adj(x, y) A adj(y, z) A adj(z, x). =z cﬁ) ,

triangleFree = Vx.Vy.Vz. —triangle(x, y, z).

Vertices x and y are at distance < 3: (/O\O/g
dist<i(x, y) = (x = y) V adj(x, y) x

t
dist<s(x, y) = Js.3t. dist<1(x, s) A dist<(s, t) A dist<(t, y).

Michat Pilipczuk Logic and graphs 3/ 26

FO and MSO on graphs

X, y, z form a triangle; the graph is triangle-free:
triangle(x, y, z) = adj(x, y) A adj(y, z) A adj(z, x). =z cﬁ) ,

triangleFree = Vx.Vy.Vz. —triangle(x, y, z).

Vertices x and y are at distance < 3: (/O\O/g
dist<1(x,y) = (x = y) V adj(x, y) x

t
dist<s(x, y) = Js.3t. dist<1(x, s) A dist<(s, t) A dist<(t, y).

Every red vertex is at distance < 3 from a blue vertex:

blueDominatesRed = Vx. [red(x) = Jy. blue(y) A dist<s(x, y)] -

Michat Pilipczuk Logic and graphs 3/ 26

FO and MSO on graphs

X, y, z form a triangle; the graph is triangle-free:
triangle(x, y, z) = adj(x, y) A adj(y, z) A adj(z, x). =z cﬁ) ,

triangleFree = Vx.Vy.Vz. —triangle(x, y, z).

Vertices x and y are at distance < 3: (/O\O/g
dist<1(x,y) = (x = y) V adj(x, y) x

t
dist<s(x, y) = Js.3t. dist<1(x, s) A dist<(s, t) A dist<(t, y).

Every red vertex is at distance < 3 from a blue vertex:

blueDominatesRed = Vx. [red(x) = Jy. blue(y) A dist<s(x, y)] -

MSO;: the graph is 3-colorable.
3Col = 4A.9B.3C.ind(A) Aind(B) A ind(C) AVx.[x e AV x € BV x € C].

Michat Pilipczuk Logic and graphs 3/ 26

FO and MSO on graphs

X, y, z form a triangle; the graph is triangle-free:
triangle(x, y, z) = adj(x, y) A adj(y, z) A adj(z, x). =z cﬁ) ,

triangleFree = Vx.Vy.Vz. —triangle(x, y, z).

Vertices x and y are at distance < 3: (/Q\O/g
dist<1(x,y) = (x = y) V adj(x, y) x

t
dist<s(x, y) = Js.3t. dist<1(x, s) A dist<(s, t) A dist<(t, y).

Every red vertex is at distance < 3 from a blue vertex:

blueDominatesRed = Vx. [red(x) = Jy. blue(y) A dist<s(x, y)] -

MSO;: the graph is 3-colorable.
3Col = 4A.9B.3C.ind(A) Aind(B) A ind(C) AVx.[x e AV x € BV x € C].

MSO;,: the graph has a Hamiltonian cycle.
Ham = 3F. [conn(F) A Vx.32e.[e € F Ainc(x, e)]].

Michat Pilipczuk Logic and graphs 3/ 26

Logic and model-checking

Michat Pilipczuk Logic and graphs 4/ 26

Logic and model-checking

First-Order logic (FO) on graphs:

Michat Pilipczuk Logic and graphs 4/ 26

Logic and model-checking

First-Order logic (FO) on graphs:

— We work with vertex-colored graphs (graphs with unary predicates).

Michat Pilipczuk Logic and graphs 4/ 26

Logic and model-checking

First-Order logic (FO) on graphs:
— We work with vertex-colored graphs (graphs with unary predicates).

— Atomic formulas: x = y, adj(x, y), red(x)

Michat Pilipczuk Logic and graphs 4/ 26

Logic and model-checking

First-Order logic (FO) on graphs:
— We work with vertex-colored graphs (graphs with unary predicates).
— Atomic formulas: x = y, adj(x, y), red(x)

— We can use boolean connectives and quantifiers.

Michat Pilipczuk Logic and graphs 4/ 26

Logic and model-checking

First-Order logic (FO) on graphs:
— We work with vertex-colored graphs (graphs with unary predicates).
— Atomic formulas: x = y, adj(x, y), red(x)
— We can use boolean connectives and quantifiers.

Examples: there is a clique of size k; there is a dominating set of size k.

Michat Pilipczuk Logic and graphs 4/ 26

Logic and model-checking

First-Order logic (FO) on graphs:
— We work with vertex-colored graphs (graphs with unary predicates).
— Atomic formulas: x = y, adj(x, y), red(x)
— We can use boolean connectives and quantifiers.

Examples: there is a clique of size k; there is a dominating set of size k.

Extensions:

Michat Pilipczuk Logic and graphs 4/ 26

Logic and model-checking

First-Order logic (FO) on graphs:
— We work with vertex-colored graphs (graphs with unary predicates).
— Atomic formulas: x = y, adj(x, y), red(x)
— We can use boolean connectives and quantifiers.

Examples: there is a clique of size k; there is a dominating set of size k.

Extensions:

— MSO;: Also quantification over subsets of vertices.

Michat Pilipczuk Logic and graphs 4/ 26

Logic and model-checking

First-Order logic (FO) on graphs:
— We work with vertex-colored graphs (graphs with unary predicates).
— Atomic formulas: x = y, adj(x, y), red(x)
— We can use boolean connectives and quantifiers.

Examples: there is a clique of size k; there is a dominating set of size k.

Extensions:
— MSO;: Also quantification over subsets of vertices.

— MSO,: Also quantification over subsets of vertices and of edges.

Michat Pilipczuk Logic and graphs 4/ 26

Logic and model-checking

First-Order logic (FO) on graphs:
— We work with vertex-colored graphs (graphs with unary predicates).
— Atomic formulas: x = y, adj(x, y), red(x)
— We can use boolean connectives and quantifiers.

Examples: there is a clique of size k; there is a dominating set of size k.

Extensions:
— MSO;: Also quantification over subsets of vertices.

— MSO,: Also quantification over subsets of vertices and of edges.

— Note: Just MSO over (V, adj(+,-)) and (V W E, inc(-, -)) encodings.

Michat Pilipczuk Logic and graphs 4/ 26

Logic and model-checking

First-Order logic (FO) on graphs:
— We work with vertex-colored graphs (graphs with unary predicates).
— Atomic formulas: x = y, adj(x, y), red(x)
— We can use boolean connectives and quantifiers.

Examples: there is a clique of size k; there is a dominating set of size k.

Extensions:
— MSO;: Also quantification over subsets of vertices.

— MSO,: Also quantification over subsets of vertices and of edges.

— Note: Just MSO over (V, adj(+,-)) and (V W E, inc(-, -)) encodings.

Model-checking problem for logic £
Given a graph G and a sentence p € L, is ¢ true in G?

Michat Pilipczuk Logic and graphs 4/ 26

Model-checking: complexity

Michat Pilipczuk Logic and graphs 5/ 26

Model-checking: complexity
Model checking MSO; and MSO,

Michat Pilipczuk Logic and graphs 5/ 26

Model-checking: complexity
Model checking MSO; and MSO,
— NP-hard already for fixed sentences of MSO; on planar graphs.

Michat Pilipczuk Logic and graphs 5/ 26

Model-checking: complexity
Model checking MSO; and MSO,
— NP-hard already for fixed sentences of MSO; on planar graphs.
— In fpt time f(p, t) - n = O, (n) on graphs of treewidth t. [Courcelle: 90]

Michat Pilipczuk Logic and graphs 5/ 26

Model-checking: complexity
Model checking MSO; and MSO,
— NP-hard already for fixed sentences of MSO; on planar graphs.
— In fpt time f(p, t) - n = O, (n) on graphs of treewidth t. [Courcelle: 90]

— Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; '10]

Michat Pilipczuk Logic and graphs 5/ 26

Model-checking: complexity
Model checking MSO; and MSO,
— NP-hard already for fixed sentences of MSO; on planar graphs.
— In fpt time f(p, t) - n = O, (n) on graphs of treewidth t. [Courcelle: 90]
— Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; '10]

— Bnd rankwidth serves a similar role for MSO;.

Michat Pilipczuk Logic and graphs 5/ 26

Model-checking: complexity
Model checking MSO; and MSO,
— NP-hard already for fixed sentences of MSO; on planar graphs.
— In fpt time f(p, t) - n = O, (n) on graphs of treewidth t. [Courcelle: 90]
— Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; '10]

— Bnd rankwidth serves a similar role for MSO;.

Model checking FO

Michat Pilipczuk Logic and graphs 5/ 26

Model-checking: complexity
Model checking MSO; and MSO,
— NP-hard already for fixed sentences of MSO; on planar graphs.
— In fpt time f(p, t) - n = O, (n) on graphs of treewidth t. [Courcelle: 90]
— Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; '10]

— serves a similar role for MSO;.

Model checking FO

— Brute-force: n®Ul¥l),

Michat Pilipczuk Logic and graphs 5/ 26

Model-checking: complexity
Model checking MSO; and MSO,
— NP-hard already for fixed sentences of MSO; on planar graphs.
— In fpt time f(p, t) - n = O, (n) on graphs of treewidth t. [Courcelle: 90]
— Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; '10]

— serves a similar role for MSO;.

Model checking FO
— Brute-force: n®U#l).

— In general AW[x|-hard, so no fpt running time O,(n°) expected.

Michat Pilipczuk Logic and graphs 5/ 26

Model-checking: complexity
Model checking MSO; and MSO,
— NP-hard already for fixed sentences of MSO; on planar graphs.
— In fpt time f(p, t) - n = O, (n) on graphs of treewidth t. [Courcelle: 90]
— Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; '10]

— serves a similar role for MSO;.

Model checking FO
— Brute-force: n®U#l).

C

— In general AW[x|-hard, so no fpt running time O,(n°) expected.

— In time O, a(n) on graphs of maximum degree < A. [scese; 95]

Michat Pilipczuk Logic and graphs 5/ 26

Model-checking: complexity
Model checking MSO; and MSO,
— NP-hard already for fixed sentences of MSO; on planar graphs.
— In fpt time f(p, t) - n = O, (n) on graphs of treewidth t. [Courcelle: 90]
— Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; '10]

— serves a similar role for MSO;.

Model checking FO
— Brute-force: n®Ul#l),
— In general AW[x|-hard, so no fpt running time O,(n°) expected.
— In time O, a(n) on graphs of maximum degree < A. [scese; 95]

— In time O, ;;(n) on H-minor-free graphs. [Flum, Grohe; 01]

Michat Pilipczuk Logic and graphs 5/ 26

locality

Model-checking: complexity
Model checking MSO; and MSO,
— NP-hard already for fixed sentences of MSO; on planar graphs.
— In fpt time f(p, t) - n = O, (n) on graphs of treewidth t. [Courcelle: 90]
— Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; '10]

— serves a similar role for MSO;.

Model checking FO
— Brute-force: n®Ul#l),
— In general AW[x|-hard, so no fpt running time O,(n°) expected.
— In time O, a(n) on graphs of maximum degree < A. [scese; 95]

— In time O, ;;(n) on H-minor-free graphs. [Flum, Grohe; 01]

Michat Pilipczuk Logic and graphs 5/ 26

compositionality

locality

Model-checking: complexity
Model checking MSO; and MSO,
— NP-hard already for fixed sentences of MSO; on planar graphs.
— In fpt time f(p, t) - n = O, (n) on graphs of treewidth t. [Courcelle: 90]
— Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; '10]

— serves a similar role for MSO;.

Model checking FO
— Brute-force: n®Ul#l),
— In general AW[x|-hard, so no fpt running time O,(n°) expected.
— In time O, a(n) on graphs of maximum degree < A. [scese; 95]

— In time O, ;;(n) on H-minor-free graphs. [Flum, Grohe; 01]

Michat Pilipczuk Logic and graphs 5/ 26

compositionality

locality

Model-checking: complexity
Model checking MSO; and MSO,
— NP-hard already for fixed sentences of MSO; on planar graphs.
— In fpt time f(p, t) - n = O, (n) on graphs of treewidth t. [Courcelle: 90]

— Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; '10]

— serves a similar role for MSO;.

Model checking FO
— Brute-force: n®Ul#l),
— In general AW[x|-hard, so no fpt running time O,(n°) expected.
— In time O, a(n) on graphs of maximum degree < A. [scese; 95]

— In time O, y(n) on H-minor-free graphs. = [Flum, Grohe; 01]

Goal: Understand graph classes with tractable FO model-checking.

Michat Pilipczuk Logic and graphs 5/ 26

compositionality

locality

Model-checking: complexity
Model checking MSO; and MSO,
— NP-hard already for fixed sentences of MSO; on planar graphs.
— In fpt time f(p, t) - n = O, (n) on graphs of treewidth t. [Courcelle: 90]

— Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; '10]

— serves a similar role for MSO;.

Model checking FO
— Brute-force: n®Ul#l),
— In general AW[x|-hard, so no fpt running time O,(n°) expected.
— In time O, a(n) on graphs of maximum degree < A. [scese; 95]

— In time O, y(n) on H-minor-free graphs. = [Flum, Grohe; 01]
Goal: Understand graph classes with tractable FO model-checking.

Precisely: For what classes €, FO-MC can be solved in fpt time O,(n¢)?

Michat Pilipczuk Logic and graphs 5/ 26

compositionality

locality

Model-checking: complexity
Model checking MSO; and MSO,
— NP-hard already for fixed sentences of MSO; on planar graphs.
— In fpt time f(p, t) - n = O, (n) on graphs of treewidth t. [Courcelle: 90]

— Bnd treewidth is the limit for such statements. [Kreutzer, Tazari; '10]

— serves a similar role for MSO;.

Model checking FO
— Brute-force: n®Ul#l),
— In general AW[x|-hard, so no fpt running time O,(n°) expected.
— In time O, a(n) on graphs of maximum degree < A. [scese; 95]

— In time O, y(n) on H-minor-free graphs. = [Flum, Grohe; 01]
Goal: Understand graph classes with tractable FO model-checking.

Precisely: For what classes €, FO-MC can be solved in fpt time O,(n¢)?

This is an excuse to understand those classes.

Michat Pilipczuk Logic and graphs 5/ 26

Treewidth, rankwidth, and compositionality

Michat Pilipczuk Logic and graphs 6/ 26

Treewidth, rankwidth, and compositionality

Treewidth:

bounded

Michat Pilipczuk Logic and graphs 6/ 26

Treewidth, rankwidth, and compositionality
Treewidth: Rankwidth:

bounded

'S
1
1
1
o
1
N v g
1 &
=]
1 .
1 @
1 Qo
1
1
1
v

Michat Pilipczuk Logic and graphs 6/ 26

Treewidth, rankwidth, and compositionality
Treewidth: Rankwidth:

bounded

A~
Compositionality: \ .
N '

e

1 S

")

1 Qo

1 @

? 1 Qo

g-type of a tree computable from g-types of subtrees

Michat Pilipczuk Logic and graphs

6/ 26

Treewidth, rankwidth, and compositionality
Treewidth: Rankwidth:

bounded

Compositionality:

papunoq

N\
7

Model-checking: Compute types bottom-up

g-type of a tree computable from g-types of subtrees

Michat Pilipczuk Logic and graphs

6/ 26

Locality

Michat Pilipczuk Logic and graphs 7/ 26

Locality

Michat Pilipczuk Logic and graphs 7/ 26

Locality

Max degree A: Balls are of constant size, computing their types is trivial.

Michat Pilipczuk Logic and graphs 7/ 26

Locality

Idea: To understand the g-type of G, it suffices to understand
the g-types of balls of radius r := 209,

Max degree A: Balls are of constant size, computing their types is trivial.

Planar: Ball of radius r has treewidth < 3r, use compositionality.

Michat Pilipczuk Logic and graphs 7/ 26

Locality

Idea: To understand the g-type of G, it suffices to understand
the g-types of balls of radius r := 209,

Max degree A: Balls are of constant size, computing their types is trivial.
Planar: Ball of radius r has treewidth < 3r, use compositionality.

H-minor-free: Exclude H as a minor. (Planar = {K;, K 3 }-minor-free.)

Michat Pilipczuk Logic and graphs 7/ 26

Locality

Idea: To understand the g-type of G, it suffices to understand

the g-types of balls of radius r := 209,

Max degree A: Balls are of constant size, computing their types is trivial.
Planar: Ball of radius r has treewidth < 3r, use compositionality.

H-minor-free: Exclude H as a minor. (Planar = {K;, K3 3} minor-free.)

Thm: H-minor-free graphs admit [Robertson, Seymour]

tree decompositions into almost embeddable parts.

2000
DN
fig. by Felix Reidl

Michat Pilipczuk Logic and graphs 7/ 26

Shallow minors

Michat Pilipczuk Logic and graphs 8/ 26

Shallow minors

So far: Results of graph theory — Tractable model-checking

Michat Pilipczuk Logic and graphs 8/ 26

Shallow minors

So far: Results of graph theory — Tractable model-checking

Idea: FO is ... s0 let’s exclude local minors.

Michat Pilipczuk Logic and graphs 8/ 26

Shallow minors

So far: Results of graph theory — Tractable model-checking

Idea: FO is ... s0 let’s exclude local minors.

H is a depth-d minor of G &
4 model of H in G with branch sets of radius < d

Michat Pilipczuk Logic and graphs

8/ 26

Shallow minors

So far: Results of graph theory — Tractable model-checking

Idea: FO is ... s0 let’s exclude local minors.

H is a depth-d minor of G &
4 model of H in G with branch sets of radius < d

Michat Pilipczuk Logic and graphs

8/ 26

Shallow minors

So far: Results of graph theory — Tractable model-checking

Idea: FO is ... s0 let’s exclude local minors.

H is a depth-d minor of G &
4 model of H in G with branch sets of radius < d

Definition
A graph class € has bounded expansion if for each d € N, there is ¢(d)
s.t. all depth-d minors of graphs from %" have avg degree at most c(d).

Definition

A graph class € is nowhere dense if for each d € N, there is t(d)

s.t. no graph G € % contains the clique K4 as a depth-d minor.

Michat Pilipczuk Logic and graphs 8/ 26

Sparsity

Michat Pilipczuk Logic and graphs 9/ 26

Sparsity

Intuition: Sparsity gradated by the depth.

Michat Pilipczuk Logic and graphs 9/ 26

Sparsity

Intuition: Sparsity gradated by the depth.

— The larger the depth, the more complicated structures are allowed.

Michat Pilipczuk Logic and graphs 9/ 26

Sparsity

Intuition: Sparsity gradated by the depth.
— The larger the depth, the more complicated structures are allowed.

% has = % has bounded expansion

Michat Pilipczuk Logic and graphs 9/ 26

Sparsity

Intuition: Sparsity gradated by the depth.
— The larger the depth, the more complicated structures are allowed.
% has = % has bounded expansion

% is minor-free = % has bounded expansion

Michat Pilipczuk Logic and graphs 9/ 26

Sparsity

Intuition: Sparsity gradated by the depth.

— The larger the depth, the more complicated structures are allowed.

% has = % has bounded expansion
% is minor-free = % has bounded expansion
% has bounded expansion = % is nowhere dense

Michat Pilipczuk Logic and graphs 9/ 26

Sparsity

Intuition: Sparsity gradated by the depth.

— The larger the depth, the more complicated structures are allowed.

% has
% is minor-free

% has bounded expansion

= % has bounded expansion

= % has bounded expansion

= % is nowhere dense

Nowhere dense

.
P

. .
4‘(.'04‘
S
'.‘—'\\ Locally bounded .
Bounded expansion f‘;::" expansion) gor%airl:grexcludmg
>y
Excluding a /
topological minor [% *
4
Excluding a minor e D) Locally bounded
cluding a mino / Xﬁf traowidth
~..— Bounded

Bounded treewidth

9%}
Bounded treedepth AAA
Star forests ** x

Michat Pilipczuk

O g

———Planar y]

® Q’. Bounded degree

¢ ‘NS?’W Outerplanar
ISP P

\f‘*j‘\{ Forests

ENET
7~ Linear forests . . .
Figure by Felix Reidl

Logic and graphs

9/ 26

Sparsity

Intuition: Sparsity gradated by the depth.

— The larger the depth, the more complicated structures are allowed.

% has = % has bounded expansion
% is minor-free = % has bounded expansion
% has bounded expansion = % is nowhere dense

Michat Pilipczuk Logic and graphs 9/ 26

Sparsity

Intuition: Sparsity gradated by the depth.

— The larger the depth, the more complicated structures are allowed.

% has = % has bounded expansion
% is minor-free = % has bounded expansion
% has bounded expansion = % is nowhere dense

This leads to the theory of Sparsity.

Algorithms and Combinatorics 28

S .t
Graphs, Structures, and Algorithms

Michat Pilipczuk Logic and graphs 9/ 26

Sparsity

Intuition: Sparsity gradated by the depth.

— The larger the depth, the more complicated structures are allowed.

% has = % has bounded expansion
% is minor-free = % has bounded expansion
% has bounded expansion = % is nowhere dense

This leads to the theory of Sparsity.
— Tools: coloring numbers, low td colorings,

flatness, neighborhood complexity, ...

Sparsity

Michat Pilipczuk Logic and graphs 9/ 26

Sparsity

Intuition: Sparsity gradated by the depth.

— The larger the depth, the more complicated structures are allowed.

% has = % has bounded expansion
% is minor-free = % has bounded expansion
% has bounded expansion = % is nowhere dense

This leads to the theory of Sparsity.
— Tools: coloring numbers, low td colorings,
flatness, neighborhood complexity, ...

— Algorithms: parameterized, approximation, distributed...

Sparsity

Michat Pilipczuk Logic and graphs 9/ 26

Sparsity

Intuition: Sparsity gradated by the depth.

— The larger the depth, the more complicated structures are allowed.

% has = % has bounded expansion
% is minor-free = % has bounded expansion
% has bounded expansion = % is nowhere dense

This leads to the theory of Sparsity.
— Tools: coloring numbers, low td colorings,
flatness, neighborhood complexity, ...
— Algorithms: parameterized, approximation, distributed...

Sparsity

— Applications: problems of character.

Michat Pilipczuk Logic and graphs 9/ 26

Sparsity

Intuition: Sparsity gradated by the depth.

— The larger the depth, the more complicated structures are allowed.

% has = % has bounded expansion
% is minor-free = % has bounded expansion
% has bounded expansion = % is nowhere dense

This leads to the theory of Sparsity.
— Tools: coloring numbers, low td colorings,
flatness, neighborhood complexity, ...
— Algorithms: parameterized, approximation, distributed...

Sparsity

— Applications: problems of character.

Note: We start to speak about graph classes.

Michat Pilipczuk Logic and graphs 9/ 26

Sparsity

Intuition: Sparsity gradated by the depth.

— The larger the depth, the more complicated structures are allowed.

% has = % has bounded expansion
% is minor-free = % has bounded expansion
% has bounded expansion = % is nowhere dense

This leads to the theory of Sparsity.
— Tools: coloring numbers, low td colorings,
flatness, neighborhood complexity, ...
— Algorithms: parameterized, approximation, distributed...

Sparsity

— Applications: problems of character.

Note: We start to speak about graph classes.

Sparsity is a of a class.

Michat Pilipczuk Logic and graphs 9/ 26

Sparsity and model-checking

Michat Pilipczuk Logic and graphs 10 / 26

Sparsity and model-checking

Theorem [Dvoiak, Kral’, Thomas; ’10]
Fix a class € of bounded expansion.

Then FO model-checking on € can be done in time O,(n).

Michat Pilipczuk Logic and graphs 10 / 26

Sparsity and model-checking

Theorem [Dvoiak, Kral’, Thomas; ’10]
Fix a class € of bounded expansion.

Then FO model-checking on € can be done in time O,(n).

Theorem [Grohe, Kreutzer, Siebertz; *14]
Fix a nowhere dense class ¥ and € > 0.

Then FO model-checking on € can be done in time O, .(n'**).

Michat Pilipczuk Logic and graphs 10 / 26

Sparsity and model-checking

Theorem [Dvoiak, Kral’, Thomas; ’10]
Fix a class € of bounded expansion.

Then FO model-checking on € can be done in time O,(n).

Theorem [Grohe, Kreutzer, Siebertz; *14]
Fix a nowhere dense class ¥ and € > 0.

Then FO model-checking on € can be done in time O, .(n'**).

Theorem [Dvorak, Kral’, Thomas; *10]
Suppose % is somewhere dense and subgraph-closed.

Then FO model-checking on & is as hard as on general graphs.

Michat Pilipczuk Logic and graphs 10 / 26

Sparsity and model-checking

Theorem [Dvoiak, Kral’, Thomas; ’10]
Fix a class € of bounded expansion.

Then FO model-checking on € can be done in time O,(n).

Theorem [Grohe, Kreutzer, Siebertz; *14]
Fix a nowhere dense class ¥ and € > 0.

Then FO model-checking on € can be done in time O, .(n'**).

Theorem [Dvorak, Kral’, Thomas; *10]
Suppose % is somewhere dense and subgraph-closed.

Then FO model-checking on & is as hard as on general graphs.

Are we done?

Michat Pilipczuk Logic and graphs 10 / 26

Sparsity and model-checking

Theorem [Dvoiak, Kral’, Thomas; ’10]
Fix a class € of bounded expansion.

Then FO model-checking on € can be done in time O,(n).

Theorem [Grohe, Kreutzer, Siebertz; *14]
Fix a nowhere dense class ¥ and € > 0.

Then FO model-checking on € can be done in time O, .(n'**).

Theorem [Dvorak, Kral’, Thomas; *10]

Suppose % is somewhere dense and|subgraph-closed.

Then FO model-checking on & is as hard as on general graphs.

Are we done? Not quite

Michat Pilipczuk Logic and graphs 10 / 26

Sparsity and model-checking

Theorem [Dvoiak, Kral’, Thomas; ’10]
Fix a class € of bounded expansion.

Then FO model-checking on € can be done in time O,(n).

Theorem [Grohe, Kreutzer, Siebertz; *14]
Fix a nowhere dense class ¥ and € > 0.

Then FO model-checking on € can be done in time O, .(n'**).

Theorem [Dvorak, Kral’, Thomas; *10]

Suppose % is somewhere dense and|subgraph-closed.

Then FO model-checking on & is as hard as on general graphs.

Are we done? Not quite

Examples of classes with tractable FO model-checking:

Michat Pilipczuk Logic and graphs 10 / 26

Sparsity and model-checking

Theorem [Dvoiak, Kral’, Thomas; ’10]
Fix a class € of bounded expansion.

Then FO model-checking on € can be done in time O,(n).

Theorem [Grohe, Kreutzer, Siebertz; *14]
Fix a nowhere dense class ¥ and € > 0.

Then FO model-checking on € can be done in time O, .(n'**).

Theorem [Dvorak, Kral’, Thomas; *10]

Suppose % is somewhere dense and|subgraph-closed.

Then FO model-checking on & is as hard as on general graphs.

Are we done? Not quite

Examples of classes with tractable FO model-checking:

— complements of planar graphs;

Michat Pilipczuk Logic and graphs 10 / 26

Sparsity and model-checking

Theorem [Dvoiak, Kral’, Thomas; ’10]
Fix a class € of bounded expansion.

Then FO model-checking on € can be done in time O,(n).

Theorem [Grohe, Kreutzer, Siebertz; *14]
Fix a nowhere dense class ¥ and € > 0.

Then FO model-checking on € can be done in time O, .(n'**).

Theorem [Dvorak, Kral’, Thomas; *10]

Suppose % is somewhere dense and|subgraph-closed.

Then FO model-checking on & is as hard as on general graphs.

Are we done? Not quite

Examples of classes with tractable FO model-checking:
— complements of planar graphs;

— classes of bounded rankwidth or twin-width.
Michat Pilipczuk Logic and graphs 10 / 26

bnd treedepth bnd shrubdepth
T T

bnd pathwidth bnd lin rankwidth
T T

bnd treewidth bnd rankwidth
T

minor-free

T

sparse tbvlvqidn-width bnd twin-width
T

bnd expansion
T

nowhere dense

Michat Pilipczuk

Logic and graphs 117/ 26

bnd treedepth
T

bnd pathwidth
T

bnd treewidth
T

minor-free

T
bnd

sparse twin-width

?

bnd expansion
T

nowhere dense

bnd shrubdepth
1
bnd lin rankwidth
1

bnd rankwidth

bnd twin-width

Need: Structure theory for graphs tailored to FO.

Michat Pilipczuk Logic and graphs 117/ 26

bnd treedepth
T

bnd pathwidth
T

bnd treewidth
T

minor-free

T
bnd

sparse twin-width

T

bnd expansion
T

nowhere dense

bnd shrubdepth
1
bnd lin rankwidth
1

bnd rankwidth

bnd twin-width

Need: Structure theory for graphs tailored to FO.

Embedding notion: Transductions.

Michat Pilipczuk Logic and graphs 117/ 26

Simple FO interpretations

Michat Pilipczuk Logic and graphs 12/ 26

Simple FO interpretations

G is a (colored) graph, ¢(x, y) is a symmetric FO formula.

Michat Pilipczuk Logic and graphs 12/ 26

Simple FO interpretations

G is a (colored) graph, ¢(x, y) is a symmetric FO formula.
Define ¢(G) as follows:

vertices of p(G) = vertices of G
edges of o(G) = all uv such that ¢(u, v) holds in G
Michat Pilipczuk Logic and graphs

12/ 26

Simple FO interpretations

G is a (colored) graph, ¢(x, y) is a symmetric FO formula.
Define ¢(G) as follows:

vertices of p(G) = vertices of G
edges of o(G) = all uv such that ¢(u, v) holds in G
Examples:
Michat Pilipczuk Logic and graphs

12/ 26

Simple FO interpretations

G is a (colored) graph, ¢(x, y) is a symmetric FO formula.
Define ¢(G) as follows:

vertices of p(G) = vertices of G
edges of o(G) = all uv such that ¢(u, v) holds in G
Examples:

©(x, y) = —adj(x, y) o ¢©(G) is the complement of G

Michat Pilipczuk Logic and graphs

12/ 26

Simple FO interpretations

G is a (colored) graph, ¢(x, y) is a symmetric FO formula.
Define ¢(G) as follows:

vertices of p(G) = vertices of G
edges of o(G) = all uv such that ¢(u, v) holds in G
Examples:

©(x, y) = —adj(x, y) o ¢©(G) is the complement of G
©(x, y) = dist<,y(x, y) o ©(Q) is the square of G

Michat Pilipczuk Logic and graphs 12/ 26

Simple FO interpretations

G is a (colored) graph, ¢(x, y) is a symmetric FO formula.
Define ¢(G) as follows:

vertices of p(G) = vertices of G
edges of o(G) = all uv such that ¢(u, v) holds in G
Examples:

©(x, y) = —adj(x, y) o ¢©(G) is the complement of G
©(x, y) = dist<,y(x, y) o ©(Q) is the square of G

Intuition: ¢(G) can be logically encoded in G.

Michat Pilipczuk Logic and graphs 12/ 26

Simple FO interpretations

G is a (colored) graph, ¢(x, y) is a symmetric FO formula.
Define ¢(G) as follows:

vertices of p(G) = vertices of G
edges of o(G) = all uv such that ¢(u, v) holds in G
Examples:

©(x, y) = —adj(x, y) o ¢©(G) is the complement of G
©(x, y) = dist<,y(x, y) o ©(Q) is the square of G

Intuition: ¢(G) can be logically encoded in G.
Obs: Model-checking 1) on ¢(G) reduces to
model-checking ¢[adj — ¢] on G.

Michat Pilipczuk Logic and graphs 12/ 26

FO transductions

Michat Pilipczuk Logic and graphs 13/ 26

FO transductions

A transduction is a mechanism T = (C, @) that takes G and applies:

Michat Pilipczuk Logic and graphs 13/ 26

FO transductions
A transduction is a mechanism T = (C, @) that takes G and applies:

— Color vertices of G using a fixed palette of colors C. G ~~ G

Michat Pilipczuk Logic and graphs 13/ 26

FO transductions

A transduction is a mechanism T = (C, @) that takes G and applies:

— Color vertices of G using a fixed palette of colors C. G ~~ G

— Apply a fixed intepretation ¢. G ~ (G)

Michat Pilipczuk Logic and graphs

13/ 26

FO transductions

A transduction is a mechanism T = (C, @) that takes G and applies:

— Color vertices of G using a fixed palette of colors C. G ~~ G
— Apply a fixed intepretation ¢. G ~ (G)

AN

— Qutput any induced subgraph of ¢(G) and drop colors.

Michat Pilipczuk Logic and graphs

13/ 26

FO transductions

A transduction is a mechanism T = (C, @) that takes G and applies:

— Color vertices of G using a fixed palette of colors C. G ~~ G

— Apply a fixed intepretation ¢. G ~ (G)

— Qutput any induced subgraph of ¢(G) and drop colors.

Note: Coloring makes a formula for output domain unnecessary.

Michat Pilipczuk Logic and graphs

13/ 26

FO transductions

A transduction is a mechanism T = (C, @) that takes G and applies:

— Color vertices of G using a fixed palette of colors C. G ~~ G
— Apply a fixed intepretation ¢. G ~ (G)

AN

— Qutput any induced subgraph of ¢(G) and drop colors.

Note: Coloring makes a formula for output domain unnecessary.

Note: A transduction is a nondeterministic mechanism.

Michat Pilipczuk Logic and graphs

13/ 26

FO transductions

A transduction is a mechanism T = (C, @) that takes G and applies:

— Color vertices of G using a fixed palette of colors C. G ~~ G
— Apply a fixed intepretation ¢. G ~ (G)

AN

— Qutput any induced subgraph of ¢(G) and drop colors.

Note: Coloring makes a formula for output domain unnecessary.
Note: A transduction is a nondeterministic mechanism.

T(G) = all possible outputs of T on G.

Michat Pilipczuk Logic and graphs

13/ 26

FO transductions
A transduction is a mechanism T = (C, @) that takes G and applies:
— Color vertices of G using a fixed palette of colors C. G ~~ G
— Apply a fixed intepretation ¢. G ~ (G)

AN

— Qutput any induced subgraph of ¢(G) and drop colors.

Note: Coloring makes a formula for output domain unnecessary.
Note: A transduction is a nondeterministic mechanism.

T(G) = all possible outputs of T on G.

For a class € and a transduction T, define

T(Cg) = UGE% T(G)

Michat Pilipczuk Logic and graphs 13/ 26

FO transductions
A transduction is a mechanism T = (C, @) that takes G and applies:
— Color vertices of G using a fixed palette of colors C. G ~~ G
— Apply a fixed intepretation ¢. G ~ (G)

AN

— Qutput any induced subgraph of ¢(G) and drop colors.

Note: Coloring makes a formula for output domain unnecessary.
Note: A transduction is a nondeterministic mechanism.

T(G) = all possible outputs of T on G.

For a class € and a transduction T, define
T(¢) = Uger T(C)
Call Z transducible from % if there is a transduction T such that
2 CT(%).

Michat Pilipczuk Logic and graphs 13/ 26

FO transductions
A transduction is a mechanism T = (C, @) that takes G and applies:
— Color vertices of G using a fixed palette of colors C. G ~~ G
— Apply a fixed intepretation ¢. G ~ (G)

AN

— Qutput any induced subgraph of ¢(G) and drop colors.

Note: Coloring makes a formula for output domain unnecessary.
Note: A transduction is a nondeterministic mechanism.

T(G) = all possible outputs of T on G.

For a class € and a transduction T, define
T(¢) = Uger T(C)
Call Z transducible from % if there is a transduction T such that
2 CT(%).

Idea: Graphs from & can be logically encoded in colored graphs from ¢ .

Michat Pilipczuk Logic and graphs 13/ 26

FO transductions
A transduction is a mechanism T = (C, @) that takes G and applies:
— Color vertices of G using a fixed palette of colors C. G ~~ G
— Apply a fixed intepretation ¢. G ~ (G)

AN

— Qutput any induced subgraph of ¢(G) and drop colors.

Note: Coloring makes a formula for output domain unnecessary.
Note: A transduction is a nondeterministic mechanism.

T(G) = all possible outputs of T on G.

For a class € and a transduction T, define
T(¢) = Uger T(C)
Call Z transducible from % if there is a transduction T such that
2 CT(%).

Idea: Graphs from & can be logically encoded in colored graphs from ¢ .

Obs: Transductions closed under composition = Quasi-order on classes

Michat Pilipczuk Logic and graphs 13/ 26

Transductions: Example

Michat Pilipczuk Logic and graphs 14/ 26

Transductions: Example

¢ = {rook graphs} = grids with rows and columns made into cliques.

O O O O O
O O O O O
O O O O O
O O O O O
O O O O O

Michat Pilipczuk Logic and graphs 14/ 26

Transductions: Example

¢ = {rook graphs} = grids with rows and columns made into cliques.

Claim: {all bipartite graphs} is transducible from %.

O O O O O
O O O O O
O O O O O
O O O O O
O O O O O

Michat Pilipczuk Logic and graphs 14/ 26

Transductions: Example

¢ = {rook graphs} = grids with rows and columns made into cliques.

Claim: {all bipartite graphs} is transducible from %.

O @ @ O O
O O @ @& @
O O @ O @
O @ O @ O
O @ @ @ ©
First row & column using red & , the adjacency matrix using blue.

Michat Pilipczuk Logic and graphs 14/ 26

Transductions: Example

¢ = {rook graphs} = grids with rows and columns made into cliques.

Claim: {all bipartite graphs} is transducible from %.

First row & column using red & , the adjacency matrix using blue.

©(x, y) = red(x) and (y) and x, y have a common blue neighbor.

Michat Pilipczuk Logic and graphs 14/ 26

Transductions: Example

¢ = {rook graphs} = grids with rows and columns made into cliques.

Claim: {all bipartite graphs} is transducible from %.

First row & column using red & , the adjacency matrix using blue.
©(x, y) = red(x) and (y) and x, y have a common blue neighbor.

Drop all blue and white vertices.

Michat Pilipczuk Logic and graphs 14/ 26

Ideals

Theorem

The following properties of graph classes are closed under transductions:
bnd shrubdepth, bnd lin rankwidth,
bnd rankwidth, bnd twin-width.

Michat Pilipczuk Logic and graphs 15/ 26

Ideals

Theorem

The following properties of graph classes are closed under transductions:
bnd shrubdepth, bnd lin rankwidth,
bnd rankwidth, bnd twin-width.

We say that these are FO ideals.

Michat Pilipczuk Logic and graphs 15/ 26

Ideals

Theorem

The following properties of graph classes are closed under transductions:
bnd shrubdepth, bnd lin rankwidth,
bnd rankwidth, bnd twin-width.

We say that these are FO ideals.

Natural ways of conceiving new ideals:

Michat Pilipczuk Logic and graphs 15/ 26

Ideals

Theorem

The following properties of graph classes are closed under transductions:
bnd shrubdepth, bnd lin rankwidth,
bnd rankwidth, bnd twin-width.

We say that these are FO ideals.

Natural ways of conceiving new ideals:

Obstructions:

If O is a class, then {All classes that do not transduce &'} is an ideal.

Michat Pilipczuk Logic and graphs 15/ 26

Ideals

Theorem

The following properties of graph classes are closed under transductions:
bnd shrubdepth, bnd lin rankwidth,
bnd rankwidth, bnd twin-width.

We say that these are FO ideals.

Natural ways of conceiving new ideals:

Obstructions:

If O is a class, then {All classes that do not transduce &'} is an ideal.

Closure:
If P is a property, then
{All classes transducible from any 4 € P} is an ideal.

We call those classes structurally P.

Michat Pilipczuk Logic and graphs 15/ 26

Monadic stability and dependence

Michat Pilipczuk Logic and graphs 16 / 26

Monadic stability and dependence
Def: ¢ is monadically dependent if {all graphs} is not transducible from .

Michat Pilipczuk Logic and graphs 16 / 26

Monadic stability and dependence
Def: ¢ is monadically dependent if {all graphs} is not transducible from .

Michat Pilipczuk Logic and graphs 16 / 26

Monadic stability and dependence
Def: ¢ is monadically dependent if {all graphs} is not transducible from .

Intuition: Weakest possible restriction, cannot encode all graphs in &

Michat Pilipczuk Logic and graphs 16 / 26

Monadic stability and dependence
Def: ¢ is monadically dependent if {all graphs} is not transducible from .

Intuition: Weakest possible restriction, cannot encode all graphs in &

Ex: {rook graphs} is not mon dependent.

Michat Pilipczuk Logic and graphs 16 / 26

Monadic stability and dependence
Def: ¢ is monadically dependent if {all graphs} is not transducible from .

Intuition: Weakest possible restriction, cannot encode all graphs in &
Ex: {rook graphs} is not mon dependent.
Ex: mon dependence for MSO;/MSO, = bnd rankwidth/treewidth.

Michat Pilipczuk Logic and graphs 16 / 26

Monadic stability and dependence
Def: ¢ is monadically dependent if {all graphs} is not transducible from .
Intuition: Weakest possible restriction, cannot encode all graphs in &
Ex: {rook graphs} is not mon dependent.

Ex: mon dependence for MSO;/MSO, = bnd rankwidth/treewidth.

Ex: mon dependence for ordered graphs = bnd twin-width. (scodmsTT; 22

Michat Pilipczuk Logic and graphs 16 / 26

Monadic stability and dependence
Def: ¢ is monadically dependent if {all graphs} is not transducible from .

Intuition: Weakest possible restriction, cannot encode all graphs in &
Ex: {rook graphs} is not mon dependent.

Ex: mon dependence for MSO;/MSO, =

Ex: mon dependence for ordered graphs = bnd twin-width. (scodmsTT; 22

Direct consequences of characterizations via grid-like obstructions.

Michat Pilipczuk Logic and graphs 16 / 26

Monadic stability and dependence
Def: ¢ is monadically dependent if {all graphs} is not transducible from .

Intuition: Weakest possible restriction, cannot encode all graphs in &
Ex: {rook graphs} is not mon dependent.

Ex: mon dependence for MSO;/MSO, =

Ex: mon dependence for ordered graphs = bnd twin-width. (scodamstr; 22

Direct consequences of characterizations via grid-like obstructions.

Def: ¢ is monadically stable if {all half-graphs} is not transducible from &

b] b2 b3 b4 b5

a, ap as ay (713

a; and bj adjacent <= i<

Michat Pilipczuk Logic and graphs 16 / 26

Monadic stability and dependence
Def: ¢ is monadically dependent if {all graphs} is not transducible from .

Intuition: Weakest possible restriction, cannot encode all graphs in &
Ex: {rook graphs} is not mon dependent.

Ex: mon dependence for MSO;/MSO, =

Ex: mon dependence for ordered graphs = bnd twin-width. (scodamstr; 22

Direct consequences of characterizations via grid-like obstructions.

Def: ¢ is monadically stable if {all half-graphs} is not transducible from &

b] b2 b3 b4 b5

a, ap as ay (713

a; and bj adjacent <= i<

Michat Pilipczuk Logic and graphs 16 / 26

Monadic stability and dependence
Def: ¢ is monadically dependent if {all graphs} is not transducible from .

Intuition: Weakest possible restriction, cannot encode all graphs in &
Ex: {rook graphs} is not mon dependent.

Ex: mon dependence for MSO;/MSO, =

Ex: mon dependence for ordered graphs = bnd twin-width. (scodmsTT; 22

Direct consequences of characterizations via grid-like obstructions.

Def: ¢ is monadically stable if {all half-graphs} is not transducible from &

b] b2 b3 b4 b5

a, ap as ay as
a; and bj adjacent <= i<

Intuition: Monadically stable classes comprise of orderless graphs.

Michat Pilipczuk Logic and graphs 16 / 26

Monadic stability and dependence
Def: ¢ is monadically dependent if {all graphs} is not transducible from .

Intuition: Weakest possible restriction, cannot encode all graphs in &
Ex: {rook graphs} is not mon dependent.

Ex: mon dependence for MSO;/MSO, =

Ex: mon dependence for ordered graphs = bnd twin-width. (scodamstr; 22

Direct consequences of characterizations via grid-like obstructions.

Def: ¢ is monadically stable if {all half-graphs} is not transducible from &

b] b2 b3 b4 b5

a, ap as ay as
a; and bj adjacent <= i<
Intuition: Monadically stable classes comprise of orderless graphs.

Concepts studied by Baldwin and Shelah in the 80s.

Michat Pilipczuk Logic and graphs 16 / 26

Relation to sparsity

Michat Pilipczuk Logic and graphs 17 / 26

Relation to sparsity

Theorem [Adler and Adler, after Podewski and Ziegler; *14 and '79]

Every nowhere dense class % is monadically stable.

Michat Pilipczuk Logic and graphs 17 / 26

Relation to sparsity

Theorem [Adler and Adler, after Podewski and Ziegler; *14 and '79]
Every nowhere dense class % is monadically stable.
In fact, if € is subgraph-closed, then

% is nowhere dense < % is mon stable & % is mon dependent.

Michat Pilipczuk Logic and graphs 17 / 26

Relation to sparsity

Theorem [Adler and Adler, after Podewski and Ziegler; *14 and '79]
Every nowhere dense class % is monadically stable.
In fact, if € is subgraph-closed, then

% is nowhere dense < % is mon stable & % is mon dependent.

Idea: Mon stability and mon dependence are purely logic notions,

and collapse to nowhere denseness for subgraph-closed classes.

Michat Pilipczuk Logic and graphs 17 / 26

Relation to sparsity

Theorem [Adler and Adler, after Podewski and Ziegler; *14 and '79]
Every nowhere dense class % is monadically stable.
In fact, if € is subgraph-closed, then

% is nowhere dense < % is mon stable & % is mon dependent.

Idea: Mon stability and mon dependence are purely logic notions,

and collapse to nowhere denseness for subgraph-closed classes.

Conjecture
Suppose % is monadically dependent.
Then FO model-checking on & can be solved in time O,(n°).

Michat Pilipczuk Logic and graphs 17 / 26

Relation to sparsity

Theorem [Adler and Adler, after Podewski and Ziegler; *14 and '79]
Every nowhere dense class % is monadically stable.
In fact, if € is subgraph-closed, then

% is nowhere dense < % is mon stable & % is mon dependent.

Idea: Mon stability and mon dependence are purely logic notions,

and collapse to nowhere denseness for subgraph-closed classes.

Conjecture
Suppose % is monadically dependent.
Then FO model-checking on & can be solved in time O,(n°).

Theorem [Dreier, Eleftheriadis, Mdhlmann, McCarty, P, Torunczyk; '23]
Suppose % is monadically stable.
Then FO model-checking on € can be solved in time O, (n°).

Michat Pilipczuk Logic and graphs 17 / 26

bnd treedepth bnd shrubdepth
T T

bnd pathwidth bnd lin rankwidth
T T

bnd treewidth bnd rankwidth
T

minor-free

T

sparse :)\:;jn_width bnd twin—widthm
T T

bnd expansion bnd flip/merge-width(Z)
T T

nowhere dense

(1): Bonnet, Kim, Thomassé, Watrigant; 20
(2): Torunczyk; 23 Dreier, Toruficzyk; '25"

Michat Pilipczuk

mon stable «— mon dependent

Logic and graphs 18 / 26

bnd treedepth < monstable . pnd shrubdepth

bnd shrubdepth
T T T
. mon stable
bnd pathwidth < «— bnd lin rankwidth
bnd lin rankwidth
T T T
. mon stable .
bnd treewidth < , <— bnd rankwidth
bnd rankwidth
T
minor-free
T
bnd mon stable)) (1)
¢ — -
sparse twin-width bnd twin-width bnd twin-width
T T T
o mon stable bnd (2)
bnd expansion < — bnd flip/merge-width
flip/merge-width
T T T
nowhere dense ¢ mon stable «— mon dependent

(1): Bonnet, Kim, Thomassé, Watrigant; 20
(2): Torunczyk; 23 Dreier, Toruficzyk; '25"

Michat Pilipczuk Logic and graphs 18 / 26

bnd treedepth

1

bnd pathwidth

1

bnd treewidth

?

minor-free

T
bnd

sparse twin-width

1

bnd expansion

1

nowhere dense

structurally
bnd treedepth
T

structurally
bnd pathwidth

1

structurally

bnd treewidth

1

structurally

minor-free

1

str bnd sparse
twin-width

1

structurally

bnd expansion

1

structurally

nowhere dense

(1): Bonnet, Kim, Thomassé, Watrigant; 20

(2): Torunczyk; 23

Dreier, Torunczyk; 25

Michat Pilipczuk

mon stable
bnd shrubdepth

1

mon stable

bnd lin rankwidth

1

mon stable

bnd rankwidth

mon stable
bnd twin-width

1

mon stable bnd
flip/merge-width

1

mon stable

Logic and graphs

bnd shrubdepth

1

bnd lin rankwidth

1

bnd rankwidth

: (D
bnd twin-width

1
(2)

bnd flip/merge-width

1

mon dependent

18 / 26

bnd treedepth

1

bnd pathwidth

1

bnd treewidth

?

minor-free

T
bnd

sparse twin-width

1

bnd expansion

1

nowhere dense

structurally mon stable
= bnd shrubdepth
bnd treedepth bnd shrubdepth
T T T
structurally mon stable

bnd pathwidth
T

structurally

bnd treewidth

1

structurally

minor-free

1

str bnd sparse
twin-width

1

structurally

bnd expansion

1

structurally

nowhere dense

(1): Bonnet, Kim, Thomassé, Watrigant; 20

(2): Torunczyk; 23

Dreier, Torunczyk; 25

Michat Pilipczuk

bnd lin rankwidth

1

mon stable

bnd rankwidth

mon stable
bnd twin-width

1

mon stable bnd
flip/merge-width

1

mon stable

Logic and graphs

bnd lin rankwidth

1

bnd rankwidth

: (D
bnd twin-width

1
(2)

bnd flip/merge-width

1

mon dependent

18 / 26

bnd treedepth

1

bnd pathwidth

1

bnd treewidth

?

minor-free

T
bnd

sparse twin-width

1

bnd expansion

1

nowhere dense

(1): Bonnet, Kim, Thomassé, Watrigant; 20

(2): Torunczyk; 23 Dreier, Toruficzyk; '25"

structurally mon stable
= = bnd shrubdepth
bnd treedepth bnd shrubdepth
T) T
structurally 3) mon stable

bnd pathwidth

bnd lin rankwidth

1

structurally

bnd treewidth

1

structurally

minor-free

1

str bnd sparse
twin-width

1

structurally

bnd expansion

1

structurally

nowhere dense

Michat Pilipczuk

1

mon stable

bnd rankwidth

mon stable
bnd twin-width

1

mon stable bnd
flip/merge-width

1

mon stable

Logic and graphs

—

bnd lin rankwidth

1

bnd rankwidth

: (D
bnd twin-width

1
(2)

bnd flip/merge-width

1

mon dependent

(3): Nesetril, Ossona de Mendez, Rabinovich, Siebertz; 20

18 / 26

bnd treedepth

1

bnd pathwidth

1

bnd treewidth

?

minor-free

T
bnd

sparse twin-width

1

bnd expansion

1

nowhere dense

(1): Bonnet, Kim, Thomassé, Watrigant; 20
(2): Torunczyk; 23

structurally mon stable
= = bnd shrubdepth
bnd treedepth bnd shrubdepth
T) T
structurally (3) mon stable . .
, = «— bnd lin rankwidth
bnd pathwidth bnd lin rankwidth
T) T
structurally (4) mon stable .
= «— bnd rankwidth
bnd treewidth bnd rankwidth
T
structurally
minor-free
T
str bnd sparse mon stable . . (1)
o — o «— bnd twin-width
twin-width bnd twin-width
T T T
structurally mon stable bnd)
— — bnd flip/merge-width
bnd expansion flip/merge-width
T T T
structurally
—— mon stable «— mon dependent

nowhere dense

Michat Pilipczuk

Logic and graphs

(3): Nesetril, Ossona de Mendez, Rabinovich, Siebertz; 20
Dreier, Toruiczyk; 251 (4): Nesetfil, Ossona de Mendez, P, Rabinovich, Siebertz; 21

18 / 26

structurally mon stable

bnd treedepth «—— = = bnd shrubdepth
bnd treedepth bnd shrubdepth
T , T) ‘ T
. structurally 3) mon stable
bnd pathwidth «—— , = <— bnd lin rankwidth
bnd pathwidth bnd lin rankwidth
T \ T) / T
. structurally (4) mon stable .
bnd treewidth «—— = «— bnd rankwidth
bnd treewidth bnd rankwidth
T T
) structurally
minor-free «— _
minor-free
T T
bnd str bnd sparse (5) mon stable) ()
o — = «— bnd twin-width
sparse twin-width twin-width bnd twin-width
T T T T
. structurally mon stable bnd :)
bnd expansion «—— , — —— bnd flip/merge-width
bnd expansion flip/merge-width
T T T T
structurally
nowhere dense «—— «—— mon stable «— mon dependent

nowhere dense

(1): Bonnet, Kim, Thomassé, Watrigant; 20 (3): Nesetfil, Ossona de Mendez, Rabinovich, Siebertz; ’20
(2): Torunczyk; 23 Dreier, Toruficzyk; '25" (4): Nesetfil, Ossona de Mendez, P, Rabinovich, Siebertz; *21
(5): Gajarsky, P, Torunczyk; 22

Michat Pilipczuk Logic and graphs 18 / 26

bnd treedepth

1

bnd pathwidth

1

bnd treewidth

?

minor-free

T
bnd

sparse twin-width

1

bnd expansion

1

nowhere dense

(1): Bonnet, Kim, Thomassé, Watrigant; 20
(2): Torunczyk; 23
(5): Gajarsky, P, Torunczyk; 22

structurally mon stable
= = bnd shrubdepth
bnd treedepth bnd shrubdepth
T) T
structurally (3) mon stable . .
, = «— bnd lin rankwidth
bnd pathwidth bnd lin rankwidth
T) T
structurally (4) mon stable .
= «— bnd rankwidth
bnd treewidth bnd rankwidth
T
structurally
minor-free
T
str bnd sparse (5) mon stable) ()
= «— bnd twin-width
twin-width bnd twin-width
T T T
structurally mon stable bnd)
— — bnd flip/merge-width
bnd expansion flip/merge-width
T (©) T T
structurally ~ ----- N
—— mon stable «— mon dependent

nowhere dense

(3): Nesetril, Ossona de Mendez, Rabinovich, Siebertz; 20
Dreier, Toruiczyk; 251 (4): Nesetfil, Ossona de Mendez, P, Rabinovich, Siebertz; 21

(6): Braunfeld, Nesetfil, Ossona de Mendez, Siebertz; 24"
Michat Pilipczuk

Logic and graphs

18 / 26

bnd treedepth

T

bnd pathwidth

T

bnd treewidth

T

minor-free

T
bnd

sparse twin-width

T

bnd expansion

T

nowhere dense

structurally mon stable
= = bnd shrubdepth
bnd treedepth bnd shrubdepth
T) T
structurally (3) mon stable . .
, = «— bnd lin rankwidth
bnd pathwidth bnd lin rankwidth
T) T
structurally (4) mon stable .
= «— bnd rankwidth
bnd treewidth bnd rankwidth
T A J
structurally
minor-free
T
str bnd sparse (5) mon stable) ()
= < bnd twin-width
twin-width bnd twin-width
t T feeeeneoeeee- foreennoee
structurally mon stable bnd)
— “— bnd flip/merge-width
bnd expansion flip/merge-width
T (6) T T ;
structurally ~ ----- N

nowhere dense

«—— mon stable <«

J

(1): Bonnet, Kim, Thomassé, Watrigant; 20
(2): Torunczyk; 23
(5): Gajarsky, P, Torunczyk; 22

mon dependent

(3): Nesetril, Ossona de Mendez, Rabinovich, Siebertz; 20
Dreier, Toruiczyk; 251 (4): Nesetfil, Ossona de Mendez, P, Rabinovich, Siebertz; 21

(6): Braunfeld, Nesetfil, Ossona de Mendez, Siebertz; 24"
Michat Pilipczuk

Logic and graphs

18 / 26

Tools

mon stable mon dependent

Michat Pilipczuk Logic and graphs 19/ 26

Tools

mon stable mon dependent

(1): Dreier, Mahlmann, Torunczyk; ’23
(2): Dreier, Mahlmann, Torunczyk; 24

Michat Pilipczuk Logic and graphs 19/ 26

Tools

mon stable mon dependent

(1): Dreier, Mahlmann, Torunczyk; ’23
(2): Dreier, Mahlmann, Torunczyk; 24
(3): GMMcCOPPSST; ’23

Michat Pilipczuk Logic and graphs 19/ 26

Tools

mon stable mon dependent
Separators
flip-flatness " b flip-breakability @
. 3) Decomp:ositions
Flipper Game : ?

Structure of neighborhoods
VC density 1+ ¢ $
Welz| orders

Neighborhood covers

(1): Dreier, Mahlmann, Torunczyk; 23 (4): DEMMCcCPT; 24
(2): Dreier, Mahlmann, Torunczyk; 24
(3): GMMcCOPPSST; ’23

Michat Pilipczuk Logic and graphs 19/ 26

U

Tools

mon stable

VC density 1+ ¢ &

Welzl orders

Neighborhood covers

(1): Dreier, Mahlmann, Torunczyk; ’23
(2): Dreier, Mahlmann, Torunczyk; 24
(3): GMMcCOPPSST; ’23

Michat Pilipczuk

mon dependent

Structure of neighborhoods

VC density 1+ s

= Welzl orders

~— Neighborhood covers

(4): DEMMCcCPT; 24
(5): Dreier, MahImann, McCarty, P, Torunczyk; unpublished

Logic and graphs 19/ 26

Tools

mon stable : mon dependent

Separators
flip-flatness i - flip-breakability ?

Decom :ositions
Flipper Game & "

Structure of neighborhoods

VC density 1+ ¢ $ VC density 1+ 5
Welzl orders Welzl orders
Neighborhood covers Neighborhood covers
(2’4)Obstrl1'|ctions @

Patterns under flips Patterns under flips

© i

c o 6
Shallow vertex-minors Shallow vertex-minors®
(1): Dreier, Mahlmann, Torunczyk; 23 (4): DEMMCcCPT; 24
(2): Dreier, Mahlmann, Torunczyk; 24 (5): Dreier, Mahlmann, McCarty, P, Torunczyk; unpublished
(3): GMMcCOPPSST; ’23 (6): Buffiere, Kim, Ossona de Mendez; '24

Michat Pilipczuk Logic and graphs 19/ 26

Flip-flatness and flip-breakability

Michat Pilipczuk Logic and graphs 20 / 26

Flip-flatness and flip-breakability

Flip/Perturbation: Complement the edge relation on a vertex subset.

Michat Pilipczuk Logic and graphs 20 / 26

Flip-flatness and flip-breakability

Flip/Perturbation: Complement the edge relation on a vertex subset.

Def: € is flip-flat if Vd 3k so that VG € € VW C V(G), thereis A C W
of size U(|W|) that can be made d-scattered by applying k flips.

Michat Pilipczuk Logic and graphs 20 / 26

Flip-flatness and flip-breakability

Flip/Perturbation: Complement the edge relation on a vertex subset.

5

Def: % is flip-flat if Vd 3k so that VG € € VW C V(G), thereis A C W
of size U(|W|) that can be made d-scattered by applying k flips.

Def: ¢ is flip-breakable if Vd 3k so that VG € € YW C V(G), there are
A, B C W of size U(|W|), so that dist(A, B) > d after applying k flips.

Michat Pilipczuk Logic and graphs 20 / 26

Flip-flatness and flip-breakability

Flip/Perturbation: Complement the edge relation on a vertex subset.

Def: € is flip-flat if Vd 3k so that VG € € VW C V(G), thereis A C W
of size U(|W|) that can be made d-scattered by applying k flips.

Def: % is flip-breakable if Vd 3k so that VG € € VYW C V(G), there are
A, B C W of size U(|W|), so that dist(A, B) > d after applying k flips.

Theorem [Dreier, Mahlmann, Torunczyk; ’23, °24]
Monadic stability & Flip-flatness
Monadic dependence & Flip-breakability

Michat Pilipczuk Logic and graphs 20 / 26

Flip-flatness and flip-breakability

Flip/Perturbation: Complement the edge relation on a vertex subset.

Def: € is flip-flat if Vd 3k so that VG € € VW C V(G), thereis A C W
of size U(|W|) that can be made d-scattered by applying k flips.

Def: % is flip-breakable if Vd 3k so that VG € € VYW C V(G), there are
A, B C W of size U(|W|), so that dist(A, B) > d after applying k flips.

Theorem [Dreier, Mahlmann, Torunczyk; ’23, °24]
Monadic stability & Flip-flatness
Monadic dependence & Flip-breakability

Fact: Flatness < Breakability < Nowhere denseness,

where flips are replaced with vertex deletions.
Michat Pilipczuk Logic and graphs 20 / 26

Flipper game

Michat Pilipczuk Logic and graphs 21/ 26

Flipper game
Fixed radius d € N. Played on a graph G.

Michat Pilipczuk Logic and graphs 21/ 26

Flipper game
Fixed radius d € N. Played on a graph G.

Two players: Flipper and Connector

Round

Michat Pilipczuk Logic and graphs 21/ 26

Flipper game
Fixed radius d € N. Played on a graph G.

Two players: Flipper and Connector

Round

Connector picks a ball of radius d.

Michat Pilipczuk Logic and graphs 21/ 26

Flipper game
Fixed radius d € N. Played on a graph G.

Two players: Flipper and Connector

Round

Connector picks a ball of radius d. ~+ The arena is restricted to this ball.

Michat Pilipczuk Logic and graphs 21/ 26

Flipper game
Fixed radius d € N. Played on a graph G.

Two players: Flipper and Connector

Round

Connector picks a ball of radius d. ~~ The arena is restricted to this ball.

Flipper chooses any vertex subset.

Michat Pilipczuk Logic and graphs 21/ 26

Flipper game
Fixed radius d € N. Played on a graph G.

Two players: Flipper and Connector

Round

Connector picks a ball of radius d. ~~ The arena is restricted to this ball.

Flipper chooses any vertex subset. ~- A flip is applied to this subset.

Michat Pilipczuk Logic and graphs 21/ 26

Flipper game
Fixed radius d € N. Played on a graph G.

Two players: Flipper and Connector

Round

Connector picks a ball of radius d. ~~ The arena is restricted to this ball.

Flipper chooses any vertex subset. ~- A flip is applied to this subset.

Michat Pilipczuk Logic and graphs 21/ 26

Flipper game
Fixed radius d € N. Played on a graph G.

Two players: Flipper and Connector

Round

Connector picks a ball of radius d. ~+ The arena is restricted to this ball.

Flipper chooses any vertex subset. ~- A flip is applied to this subset.

Michat Pilipczuk Logic and graphs 21/ 26

Flipper game
Fixed radius d € N. Played on a graph G.

Two players: Flipper and Connector

Round

Connector picks a ball of radius d. ~+ The arena is restricted to this ball.

Flipper chooses any vertex subset. ~- A flip is applied to this subset.

Michat Pilipczuk Logic and graphs 21/ 26

Flipper game
Fixed radius d € N. Played on a graph G.

Two players: Flipper and Connector

Round

Connector picks a ball of radius d. ~+ The arena is restricted to this ball.

Flipper chooses any vertex subset. ~- A flip is applied to this subset.

Michat Pilipczuk Logic and graphs 21/ 26

Flipper game
Fixed radius d € N. Played on a graph G.

Two players: Flipper and Connector

Round

Connector picks a ball of radius d. ~+ The arena is restricted to this ball.

Flipper chooses any vertex subset. ~- A flip is applied to this subset.

Game finishes when the arena gets reduced to one vertex.

Michat Pilipczuk Logic and graphs 21/ 26

Flipper game
Fixed radius d € N. Played on a graph G.

Two players: Flipper and Connector

Round

Connector picks a ball of radius d. ~+ The arena is restricted to this ball.

Flipper chooses any vertex subset. ~- A flip is applied to this subset.

Game finishes when the arena gets reduced to one vertex.
Flipper: finish the game quickly Connector: stay alive

Michat Pilipczuk Logic and graphs 21/ 26

Flipper game and monadic stability

Michat Pilipczuk Logic and graphs 22/ 26

Flipper game and monadic stability

Splitter Game: Same, but Splitter deletes a vertex in every round.

Michat Pilipczuk Logic and graphs 22/ 26

Flipper game and monadic stability
Splitter Game: Same, but Splitter deletes a vertex in every round.

Theorem [Grohe, Kreutzer, Siebertz; *14]
% is nowhere dense. &
For every d € N, there is k € N such that Splitter can win
the radius-d Splitter game in any G € € in < k rounds.

Michat Pilipczuk Logic and graphs 22/ 26

Flipper game and monadic stability
Splitter Game: Same, but Splitter deletes a vertex in every round.

Theorem [Grohe, Kreutzer, Siebertz; *14]
% is nowhere dense. &
For every d € N, there is k € N such that Splitter can win
the radius-d Splitter game in any G € € in < k rounds.

Theorem [Gajarsky, Mdhlmann, McCarty, Ohlmann, P, Przybyszewski, Siebertz, Sokotowski, Torunczyk; ’23]
% is mon stable. &
For every d € N, there is k € N such that Flipper can win
the radius-d Flipper game in any G € % in < k rounds.

Michat Pilipczuk Logic and graphs 22/ 26

Flipper game and monadic stability
Splitter Game: Same, but Splitter deletes a vertex in every round.

Theorem [Grohe, Kreutzer, Siebertz; *14]
% is nowhere dense. &
For every d € N, there is k € N such that Splitter can win
the radius-d Splitter game in any G € € in < k rounds.

Theorem [Gajarsky, Mdhlmann, McCarty, Ohlmann, P, Przybyszewski, Siebertz, Sokotowski, Torunczyk; ’23]
% is mon stable. &
For every d € N, there is k € N such that Flipper can win
the radius-d Flipper game in any G € % in < k rounds.

Game tree = Shallow decomposition

Michat Pilipczuk Logic and graphs 22/ 26

Flipper game and monadic stability
Splitter Game: Same, but Splitter deletes a vertex in every round.

Theorem [Grohe, Kreutzer, Siebertz; *14]
% is nowhere dense. &
For every d € N, there is k € N such that Splitter can win
the radius-d Splitter game in any G € € in < k rounds.

Theorem [Gajarsky, Mdhlmann, McCarty, Ohlmann, P, Przybyszewski, Siebertz, Sokotowski, Torunczyk; ’23]
% is mon stable. &
For every d € N, there is k € N such that Flipper can win
the radius-d Flipper game in any G € % in < k rounds.

Game tree = Shallow decomposition
vertex deletion ~ flip

Michat Pilipczuk Logic and graphs 22/ 26

Structure of neighborhoods

Michat Pilipczuk Logic and graphs 23/ 26

Structure of neighborhoods

Theorem [Dreier, Eleftheriadis, Mahlmann, McCarty, P, Torunczyk; '24]
% mon stable. Then for all G € ¥, A C V(G), and € > 0, we have
{N[V]NA: v e V(G)} < O(|A]").

Michat Pilipczuk Logic and graphs 23/ 26

Structure of neighborhoods

Theorem [Dreier, Eleftheriadis, Mahlmann, McCarty, P, Torunczyk; '24]
% mon stable. Then for all G € ¥, A C V(G), and € > 0, we have
{N[v]N A: v e V(G)}| < O(|A]").

Theorem [follows from Welzl ’88]
¢ mon stable. Then every G € € admits a vertex ordering o such that:

for every vertex v, N[v] breaks into O.(n%) intervals in o.

Michat Pilipczuk Logic and graphs 23/ 26

Structure of neighborhoods

Theorem [Dreier, Eleftheriadis, Mahlmann, McCarty, P, Torunczyk; '24]
% mon stable. Then for all G € ¥, A C V(G), and € > 0, we have
{N[v]N A: v e V(G)}| < O(|A]").

Theorem [follows from Welzl ’88]
¢ mon stable. Then every G € € admits a vertex ordering o such that:

for every vertex v, N[v] breaks into O.(n%) intervals in o.

Theorem [Dreier, Eleftheriadis, Mahlmann, McCarty, P, Torunczyk; '24]

% mon stable. Then for every G € € and d € N, there is F C 2¥(%) s t.:
— every A € F has weak diameter < 4d,
— every radius-d ball B is contained in some A € F;

— every vertex v belongs to O.(n°) sets A € F.

Michat Pilipczuk Logic and graphs 23/ 26

Implementing model-checking

Michat Pilipczuk Logic and graphs 24/ 26

Implementing model-checking

Implemented in [Dreier, Mahlmann, Siebertz; '23],

Goal: Check whether Y holds in G. inspired by the strategy from [Grohe, Kreutzer, Siebertz; *14].

Michat Pilipczuk Logic and graphs 24/ 26

Implementing model-checking

Implemented in [Dreier, Mahlmann, Siebertz; '23],

Goal: Check whether Y holds in G. inspired by the strategy from [Grohe, Kreutzer, Siebertz; *14].

Michat Pilipczuk Logic and graphs 24/ 26

Implementing model-checking

Implemented in [Dreier, Mahlmann, Siebertz; '23],

Goal: Check whether Y holds in G. inspired by the strategy from [Grohe, Kreutzer, Siebertz; *14].

Pick d := 29(2(¥)) and consider the radius-d Game on G, viewed by Flipper.

Michat Pilipczuk Logic and graphs 24/ 26

Implementing model-checking

Implemented in [Dreier, Mahlmann, Siebertz; '23],

Goal: Check whether Y holds in G. inspired by the strategy from [Grohe, Kreutzer, Siebertz; *14].

Pick d := 29(2(¥)) and consider the radius-d Game on G, viewed by Flipper.

Nodes ~» Induced subgraphs under some flips.

Michat Pilipczuk Logic and graphs 24/ 26

Implementing model-checking

Implemented in [Dreier, Mahlmann, Siebertz; '23],

Goal: Check whether Y holds in G. inspired by the strategy from [Grohe, Kreutzer, Siebertz; *14].

Pick d := 29(2(¥)) and consider the radius-d Game on G, viewed by Flipper.

Nodes ~» Induced subgraphs under some flips.

Locality: Type of a node can be computed from types of children.

Michat Pilipczuk Logic and graphs 24/ 26

Implementing model-checking

Implemented in [Dreier, Mahlmann, Siebertz; '23],

Goal: Check whether Y holds in G. inspired by the strategy from [Grohe, Kreutzer, Siebertz; *14].

Pick d := 29(2(¥)) and consider the radius-d Game on G, viewed by Flipper.

Nodes ~» Induced subgraphs under some flips.
Locality: Type of a node can be computed from types of children.

Idea: Compute the types bottom-up.

Michat Pilipczuk Logic and graphs 24/ 26

Implementing model-checking

Implemented in [Dreier, Mahlmann, Siebertz; '23],

Goal: Check whether Y holds in G. inspired by the strategy from [Grohe, Kreutzer, Siebertz; *14].

Pick d := 29(2(¥)) and consider the radius-d Game on G, viewed by Flipper.

Nodes ~» Induced subgraphs under some flips.
Locality: Type of a node can be computed from types of children.
Idea: Compute the types bottom-up.

Problem: The tree can be as large as n*.

Michat Pilipczuk Logic and graphs 24/ 26

Implementing model-checking

Implemented in [Dreier, Mahlmann, Siebertz; '23],

Goal: Check whether Y holds in G. inspired by the strategy from [Grohe, Kreutzer, Siebertz; *14].

Pick d := 29(2(¥)) and consider the radius-d Game on G, viewed by Flipper.

Nodes ~» Induced subgraphs under some flips.
Locality: Type of a node can be computed from types of children.
Idea: Compute the types bottom-up.

Problem: The tree can be as large as n*.

Fix: Restrict the Connector’s moves to radius-d cover.

Michat Pilipczuk Logic and graphs 24/ 26

Implementing model-checking

Implemented in [Dreier, Mahlmann, Siebertz; '23],
Goal: Check whether Y holds in G. inspired by the strategy from [Grohe, Kreutzer, Siebertz; *14].

Pick d := 29(2(¥)) and consider the radius-d Game on G, viewed by Flipper.

Nodes ~» Induced subgraphs under some flips.
Locality: Type of a node can be computed from types of children.
Idea: Compute the types bottom-up.

Problem: The tree can be as large as n*.

Fix: Restrict the Connector’s moves to radius-d cover.

radius-d Game < Game on radius-d cover < radius-4d Game

Michat Pilipczuk Logic and graphs 24/ 26

Implementing model-checking

Implemented in [Dreier, Mahlmann, Siebertz; '23],
Goal: Check whether Y holds in G. inspired by the strategy from [Grohe, Kreutzer, Siebertz; *14].

Pick d := 29(2(¥)) and consider the radius-d Game on G, viewed by Flipper.

Nodes ~» Induced subgraphs under some flips.
Locality: Type of a node can be computed from types of children.
Idea: Compute the types bottom-up.

Problem: The tree can be as large as n*.

Fix: Restrict the Connector’s moves to radius-d cover.
radius-d Game < Game on radius-d cover < radius-4d Game

Now the game tree has size O.(n'™).

Michat Pilipczuk Logic and graphs 24/ 26

Forbidden patterns

Michat Pilipczuk Logic and graphs 25/ 26

Forbidden patterns
Theorem [Dreier, Mahlmann, Toruriczyk; *24]
% is mon dependent iff there are no r, k € N s.t. € contains induced:
— a k-flip of every star r-crossing; or
— a k-flip of every clique r-crossing; or
— a k-flip of every half-graph r-crossing; or

— a k-flip of every comparability grid.

/!’1 el
i)

4
,'l_/; 7%

|

\
IS
I\
N
Iy
\
I\
}1

DN
ti&\.\\‘
NN
Y

W

w\\\

|
)
|

/4

N

‘\\\\\

N

Figure by Niko Mahlmann

Michat Pilipczuk Logic and graphs 25/ 26

Theorem

% is mon dependent iff there are no r, k € N s.t. € contains induced:

— a k-flip of every star r-crossing; or

Forbidden patterns

— a k-flip of every clique r-crossing; or

— a k-flip of every half-graph r-crossing; or

— a k-flip of every comparability grid.

Michat Pilipczuk

Logic and graphs

\

N

A

h.

\X

NS

I
N
N

N

W

NN

N\

\\

N
N
A\

A\

N
A}

N

N

b

\|
Iy
[]

SRR

‘r

NN

NN

N

N\

N

N

\\

=
R

[Dreier, Mahlmann, Torunczyk; ’24]

Figure by Niko Mahlmann

Cor: ¥ mon independent and hereditary = FO-MC is AW[x]-hard.

25/ 26

Forbidden patterns
Theorem [Dreier, Mahlmann, Toruriczyk; *24]
% is mon dependent iff there are no r, k € N s.t. € contains induced:
— a k-flip of every star r-crossing; or
— a k-flip of every clique r-crossing; or
— a k-flip of every half-graph r-crossing; or

— a k-flip of every comparability grid.

V.
I A

Figure by Niko Mahlmann

l.
|
I

AN
A

W
_§\ N
N
N
N\

i
X
|
|

r

\
1]
I

NN
NN

N\
N
RN
NN
w

Cor: ¥ mon independent and hereditary = FO-MC is AW[x]-hard.

Fact: For mon stable: star crossings, clique crossings, and half-graphs.

Michat Pilipczuk Logic and graphs 25/ 26

Conclusions

Michat Pilipczuk Logic and graphs 26 / 26

Conclusions

Transductions: a model-theoretic notion of embedding for classes.

Michat Pilipczuk Logic and graphs 26 / 26

Conclusions
Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

Michat Pilipczuk Logic and graphs 26 / 26

Conclusions
Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

— Basic local separability using flips.

Michat Pilipczuk Logic and graphs 26 / 26

Conclusions
Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

— Basic local separability using flips.

Mon stability: being unordered.

Michat Pilipczuk Logic and graphs 26 / 26

Conclusions
Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

— Basic local separability using flips.

Mon stability: being unordered.

— Bounded-depth decompositions by alternating flips and localization.

Michat Pilipczuk Logic and graphs 26 / 26

Conclusions
Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

— Basic local separability using flips.

Mon stability: being unordered.

— Bounded-depth decompositions by alternating flips and localization.

Goal: Model-checking FO is fpt on mon dependent classes.

Michat Pilipczuk Logic and graphs 26 / 26

Conclusions
Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

— Basic local separability using flips.

Mon stability: being unordered.

— Bounded-depth decompositions by alternating flips and localization.

Goal: Model-checking FO is fpt on mon dependent classes.

— Achieved on mon stable graph classes.

Michat Pilipczuk Logic and graphs 26 / 26

Conclusions
Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

— Basic local separability using flips.

Mon stability: being unordered.

— Bounded-depth decompositions by alternating flips and localization.

Goal: Model-checking FO is fpt on mon dependent classes.
— Achieved on mon stable graph classes.

— Main hurdle on mon dependent: decomposition.

Michat Pilipczuk Logic and graphs 26 / 26

Conclusions
Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

— Basic local separability using flips.

Mon stability: being unordered.

— Bounded-depth decompositions by alternating flips and localization.

Goal: Model-checking FO is fpt on mon dependent classes.
— Achieved on mon stable graph classes.

— Main hurdle on mon dependent: decomposition.

A lot of other avenues in the theory.

Michat Pilipczuk Logic and graphs 26 / 26

Conclusions
Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

— Basic local separability using flips.

Mon stability: being unordered.

— Bounded-depth decompositions by alternating flips and localization.

Goal: Model-checking FO is fpt on mon dependent classes.
— Achieved on mon stable graph classes.

— Main hurdle on mon dependent: decomposition.

A lot of other avenues in the theory.

— Obstruction characterizations for ideals.

Michat Pilipczuk Logic and graphs 26 / 26

Conclusions
Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

— Basic local separability using flips.

Mon stability: being unordered.

— Bounded-depth decompositions by alternating flips and localization.

Goal: Model-checking FO is fpt on mon dependent classes.
— Achieved on mon stable graph classes.

— Main hurdle on mon dependent: decomposition.

A lot of other avenues in the theory.
— Obstruction characterizations for ideals.

— Sparsification conjecture.

Michat Pilipczuk Logic and graphs 26 / 26

Conclusions
Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

— Basic local separability using flips.

Mon stability: being unordered.

— Bounded-depth decompositions by alternating flips and localization.

Goal: Model-checking FO is fpt on mon dependent classes.
— Achieved on mon stable graph classes.

— Main hurdle on mon dependent: decomposition.

A lot of other avenues in the theory.
— Obstruction characterizations for ideals.
— Sparsification conjecture.
— Fine understanding of the transduction order.

Michat Pilipczuk Logic and graphs 26 / 26

Conclusions
Transductions: a model-theoretic notion of embedding for classes.

Mon dependence: being non-equivalent to all graphs.

— Basic local separability using flips.

Mon stability: being unordered.

— Bounded-depth decompositions by alternating flips and localization.

Goal: Model-checking FO is fpt on mon dependent classes.
— Achieved on mon stable graph classes.

— Main hurdle on mon dependent: decomposition.

A lot of other avenues in the theory.
— Obstruction characterizations for ideals.
— Sparsification conjecture. Thanks for attention!
— Fine understanding of the transduction order.

Michat Pilipczuk Logic and graphs 26 / 26

