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Π-Decompositions



Π-Decompositions

Π: hereditary class property, f : N → N, p ∈ N.

Definition
C has an f -bounded Π-decomposition with parameter p if there exists Dp ∈ Π such that

∀G ∈ C ∃ partition P of V (G ) with |P| ≤ f (|G |) and

G [P1 ∪ · · · ∪ Pp] ∈ Dp ∀P1, . . . ,Pp ∈ P.

• f (n) = O(1) −→ bounded-size Π-decomposition;
• f (n) = no(1) −→ quasibounded-size Π-decomposition.



What property Π?

Bounded treedepth Bounded shrubdepth

≤ h

11 01 10

0 1

01 11 10
x

y

r

r y x



x y

x ∧ y


≤ h

x y



Π-Decompositions

f (n)
Π bounded tree depth bounded shrubdepth

bounded
O(1)

bounded expansion structurally bounded expansion
size [NO ’08] [GKNOPST ’20].

quasi-bounded
no(1)

nowhere dense

monadically stable

size [NO ’11]

[BNOS ’25]

Theorem
A hereditary class C of graphs is stable if and only if it admits quasibounded-size bounded
shrubdepth decompositions.
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Sketch of the proof



Sketch of the proof ⇒

Quasibounded-size bounded shurbdepth decompositions ⇒ stable:

• Quasibounded-size dependent decompositions ⇐⇒ dependent.
Follows from existence of pre-coding (by an existential formula) of hereditary inde-
pendent classes [BL ’22+].

• Quasibounded-size stable decompositions ⇐⇒ stable.
Follows from stable ⇐⇒ dependent and edge-stable [NOPRS ’21].



Sketch of the proof ⇐

Quasibounded-size bounded shurbdepth decompositions ⇐ stable:

• Existence of distance-r neighborhood covers with almost nowhere dense incidence
graph [DEMMPT ’24]

• Improve the neighborhood cover so that distance between connected components in
a same cluster is ≥ 2r + 3

• Flipper wins the flipper game of radius r in O(1) rounds [GMMOPPSST ’23]
• Construct a decomposition tree by alternatively playing flipper game and construct-

ing neighborhood covers
• Deduce a quasi-bush representation by quasi-bushes in an almost nowhere dense

class
• Deduce the existence of quasibounded-size bounded shrubdepth decompositions

[DGKPS ’22].
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Some consequences



Large homogeneous sets

Erdős-Hajnal property

Every graph in a hereditary stable class of graphs has a clique or an independent set of
size Ω(|G |1/2−ε) for every ε > 0.

Proof.
Consider quasibounded-size bounded shrubdepth decompositions with parameter 1.

Tightness

For every f : N → N, there exists a hereditary stable class C such that for every large c
there exists G ∈ C with

|G | ≥ f (c) and max(α(G ), ω(G )) < |G |1/2−1/c .
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Logarithmic density of induced subgraphs

Theorem [NO ’11]

For every monotone nowhere dense class C and every finite F we have

lim sup
G∈C

log(#F ⊆ G )

log |G |
∈ N ∪ {−∞}.
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