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Introducing Query Containment Problem (QCP)

QCP is a decision problem:

They give us two queries, Φs and Φb,
and ask whether for each D it holds that Φs(D) ≤ Φb(D)

If true, denoted as Φs ⊆∀ Φb

The central open problem:

decidability of QCP(CQ,CQ).
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An example. And an easy corollary.

Φs = (∃x , y Dog(x),Cat(y)) ∨ (∃x , y Dog(x),Cat(y))

Φb = (∃x , y Dog(x),Dog(y)) ∨ (∃x , y Cat(x),Cat(y))

Does Φs ⊆∀ Φb ? Yes! 2cd ≤ c2 + d2

Corollary:

We have proved that QCP(UCQ,UCQ) is undecidable:

any polynomial can be encoded like this
(let us just take one species for each variable).
And then use Hilbert’s 10th problem.
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What has been known on the negative side.
Jayram, Kolaitis, Vee, 2006: QCP(CQ̸=, CQ̸=) is undecidable.

They need 1018 inequalities.

“The containment problem for real CQs with inequalities”

Why was proving undecidability for the UCQ case easy ?
monomials naturally translate to CQs,
polynomials naturally translate to UCQ.

[JKV06] invent a complicated mechanism...
...to encode polynomials as CQs πs and πb.
But it only works for some “correct” databases.
So they find a way to “reward” πb if D is incorrect.
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Our contribution.
We introduce a technique called cq-ization.
It takes a UCQ Ψ and returns a CQ cq(Ψ).
The idea is that: (cq(Ψ))(D) somehow depends on Ψ(D).

What it is good for:

Theorem 1: QCP(CQ,UCQ) is as decidable as QCP(CQ,CQ).

Theorem 2: For every ε > 0 This problem is undecidable:
given CQs ψs and ψb;
does 2 · (ψs(D)) ≤ ψb(D) hold for every∗ D?

Corollary: QCP(UCQ,CQ) is undecidable∗:
It is undecidable, for given CQs ψs and ψb,
whether (ψs ∨ ψs)(D) ≤ ψb(D) holds for every∗ D.

(*) Fine print: only non-trivial structures D, which satisfy ♂ ̸= ♀, are allowed.
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How Theorem 2 implies [JKV06]?

For given CQs ψs and ψb we must construct CQs ϕs and ϕb

such that The following two conditions are equivalent:
• 2 · ψs(D) ≤ ψb(D) holds for each D such that D |= ♂ ̸= ♀
• (♂ ̸= ♀) ∧ γ ∧ ψs ⊆∀ x ̸= x ′ ∧ γ ∧ ψb

Define: γ = P(x) ∧ P(x ′) ∧ P(♀) ∧ P(♂) (P is new)

and: ϕs = ψs ∧ γ and ϕb = ψb ∧ γ

Idea: using inequality “we can multiply by 2”:
((♂ ̸= ♀) ∧ γ)(D) ≤ 2 · ((x ̸= x ′ ∧ γ)(D))

Can we multiply by 2 without ̸= ? No, we (provably) can’t.
If we could, QCP(CQ,CQ) would be undecidable.
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Decidability of QCP(CQ,CQ) remains open.

So... what is the probability
that the problem is decidable?

Phokion is a Bayesian:
More work was done trying to
prove decidability. We failed so
it is more likely to be undecidable.

Albert is a frequentist:
It is either one or zero.
We just do not know yet.

(Which is absolutely correct
and absolutely useless)


