Hereditary First-Order Logic and Extensional ESO

Santiago Guzmán-Pro joint work with Manuel Bodirsky

Institute of Algebra TU Dresden

Finite and Algorithmic Model Theory, Les Houches, 2025

Santiago G.P. HER-FO and extensional ESO

ヨトイヨト

Santiago G.P. HER-FO and extensional ESO

э

★ 문 ► ★ 문 ►

Edge-modification

For a fixed graph class C and an input graph G determine the minimum number of edge modifications to G so that it belongs to C.

- Edge-deletion problems (Yanakkakis 1981).
- Hardness of Edge-Modification problems (Alon, Stav 2009).
- Dichotomy Results on the Hardness of *H*-free Edge Modification Problems (Aravind, Sandeep, Sivadasan 2017).
- Hardness of approximation for H-free edge modification problems (Bliznets, Cygan, Komosa, Pilipczuk 2018)

「ア・イヨト・ヨト・

Resilience problems

For a fixed query μ , determine the resilience of μ in an input database \mathbb{D} .

- The Complexity of Resilience and Responsibility for Self-Join-Free Conjunctive Queries (Freire, Gatterbauer, Immerman, Meliou 2015)
- New Results for the Complexity of Resilience for Binary with Self-Joins (Freire, Gatterbauer, Immerman, Meliou 2020).
- A Unified Approach for Resilience and Causal Responsibility with Integer Linear Programming (ILP) and LP Relaxations. (Makhija, Gatterbauer 2023).
- The Complexity of Resilience Problems via Valued Constraint Satisfaction (Bodirsky, Semanišinová, Lutz 2024).

・ 同 ト ・ ヨ ト ・ ヨ ト …

Vertex-deletion

For a fixed graph class C and an input graph G determine the minimum k so that G - U belongs to C for some $|U| \le k$.

- Node-Deletion NP-Complete Problems (Krishnamoorthy, Deo 1979)
- The node-deletion problem for hereditary properties is NP-complete (Lewis, Yanakkakis 1980).
- Finding odd-cycle transversals (Reed, Smith, Vetta 2004)
- On the Descriptive Complexity of Vertex Deletion Problems (Bannach, Chudigiewitsch, Tantau 2024)

「ア・イヨト・ヨト・

Modification to first-order logic

Edge-modification: Given a graph G and a positive integer k test whether it is possible to modify at most k edges so that it satisfies ϕ .

Edge-completion: Given a graph G and a positive integer k test whether it is possible to add at most k edges from G so that it satisfies ϕ .

Edge-deletion: Given a graph G and a positive integer k test whether it is possible to remove at most k edges from G so that it satisfies ϕ .

Vertex-deletion: Given a graph G and a positive integer k test whether it is possible to remove at most k vertices from G so that it satisfies ϕ .

On the parameterized complexity of graph modification to first-order logic properties (Fomin, Golovach, Thilikos 2020)

イロト イポト イヨト イヨト

Modification to first-order logic (without parameter *k*)

Edge-modification: Given a graph *G* test whether we can modify the edges of *G* so that it satisfies ϕ .

Edge-completion: Given a graph *G* test whether we can add edges to *G* so that it satisfies ϕ .

Edge-deletion: Given a graph G test whether we can remove edges from G so that it satisfies ϕ .

Vertex-deletion: Given a graph *G* test whether we can remove vertices of *G* so that it satisfies ϕ .

・ 同 ト ・ ヨ ト ・ ヨ ト …

-

Modification to first-order logic (without parameter k)

Edge-modification: Given a graph *G* test whether we can modify the edges of *G* so that it satisfies ϕ .

Edge-completion: Given a graph *G* test whether we can add edges to *G* so that it satisfies ϕ .

Edge-deletion: Given a graph G test whether we can remove edges from G so that it satisfies ϕ .

Vertex-deletion: Given a graph *G* test whether we can remove vertices of *G* so that it satisfies ϕ .

Modification to first-order logic (without parameter k)

Edge-modification: Given a graph *G* test whether we can modify the edges of *G* so that it satisfies ϕ .

Edge-completion: Given a graph G test whether we can add edges to G so that it satisfies ϕ .

Edge-deletion: Given a graph *G* test whether we can remove edges from *G* so that it satisfies ϕ .

Vertex-deletion: Given a graph *G* test whether we can remove vertices of *G* so that it satisfies ϕ .

イロト イヨト イヨト ・ ヨト

A structure \mathbb{A} hereditarily satisfies ϕ if every (induced) substructure \mathbb{A}' of \mathbb{A} satisfies ϕ .

A structure \mathbb{A} hereditarily satisfies ϕ if every (induced) substructure \mathbb{A}' of \mathbb{A} satisfies ϕ .

Obs. A hereditarily satisfies ϕ iff (\mathbb{A}, k) is a no-instance of vertex-deletion to $\neg \phi$ whenever $k \leq |A| - 1$.

A structure \mathbb{A} hereditarily satisfies ϕ if every (induced) substructure \mathbb{A}' of \mathbb{A} satisfies ϕ .

Obs. A hereditarily satisfies ϕ iff (\mathbb{A}, k) is a no-instance of vertex-deletion to $\neg \phi$ whenever $k \leq |A| - 1$.

Ex. 1 Forests: $\phi := \text{exists a vertex of degree 1}$.

Ex. 2 Chordal graphs: $\phi :=$ exists a simplicial vertex (Rose, 1970).

Ex. 3 Acyclic digraphs: $\phi :=$ exists a source.

A structure \mathbb{A} hereditarily satisfies ϕ if every (induced) substructure \mathbb{A}' of \mathbb{A} satisfies ϕ .

Obs. A hereditarily satisfies ϕ iff (\mathbb{A}, k) is a no-instance of vertex-deletion to $\neg \phi$ whenever $k \leq |A| - 1$.

Ex. 1 Forests: $\phi :=$ exists a vertex of degree 1.

Ex. 2 Chordal graphs: $\phi :=$ exists a simplicial vertex (Rose, 1970).

Ex. 3 Acyclic digraphs: $\phi :=$ exists a source.

A structure \mathbb{A} hereditarily satisfies ϕ if every (induced) substructure \mathbb{A}' of \mathbb{A} satisfies ϕ .

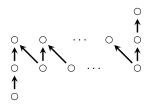
Obs. A hereditarily satisfies ϕ iff (\mathbb{A}, k) is a no-instance of vertex-deletion to $\neg \phi$ whenever $k \leq |A| - 1$.

Ex. 1 Forests: $\phi :=$ exists a vertex of degree 1.

Ex. 2 Chordal graphs: $\phi :=$ exists a simplicial vertex (Rose, 1970).

Ex. 3 Acyclic digraphs: $\phi :=$ exists a source.

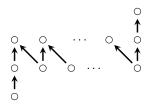
Ex. 4 CSP($\rightarrow \rightarrow$) is in HerFO.



Non-Ex. $CSP(K_2)$ is not in HerFO.

B → < B

Ex. 4 CSP($\rightarrow \rightarrow$) is in HerFO.



Non-Ex. $CSP(K_2)$ is not in HerFO.

.⊒ →

Obs. Every problem in HerFO is expressible in UMSO: \mathbbm{A} hereditarily satisfies ϕ if and only if

$$\mathbb{A} \models \forall S. \ S \neq A \implies \phi_{\overline{S}}$$

э

Obs. Every problem in HerFO is expressible in UMSO: \mathbbm{A} hereditarily satisfies ϕ if and only if

$$\mathbb{A} \models \forall S. \ S \neq A \implies \phi_{\overline{S}}$$

Qst. Is every problem in HerFO solvable in polynomial-time?

A B + A B +

Obs. Every problem in HerFO is expressible in UMSO: \mathbbm{A} hereditarily satisfies ϕ if and only if

$$\mathbb{A} \models \forall S. \ S \neq A \implies \phi_{\overline{S}}$$

Qst. Is every problem in HerFO solvable in polynomial-time?

Lem. If the quantifier prefix of ϕ is of the form $\forall^* \exists \forall^*$ or $\forall^* \exists^*$, then Her(ϕ) is in P and in SNP.

• • • • • • • • •

Obs. Every problem in HerFO is expressible in UMSO: \mathbbm{A} hereditarily satisfies ϕ if and only if

$$\mathbb{A} \models \forall S. \ S \neq A \implies \phi_{\overline{S}}$$

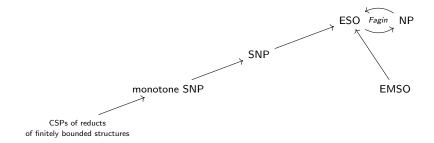
Qst. Is every problem in HerFO solvable in polynomial-time?

Thm. If the quantifier prefix of ϕ is of the form $\forall^* \exists \forall^*$ or $\forall^* \exists^*$, then $\text{Her}(\phi)$ is in P and in SNP. For every other quantifier prefix Q, there is an FO formula ϕ with quantifier prefix Q such that $\text{Her}(\phi)$ is coNP-complete.

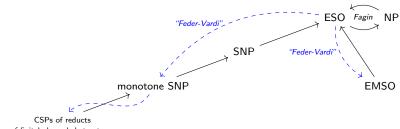
.

"Qst." What is the computational power of HerFO?

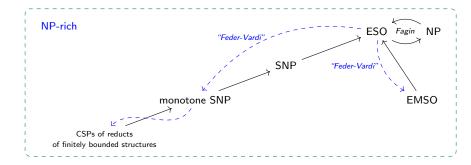
A B + A B +

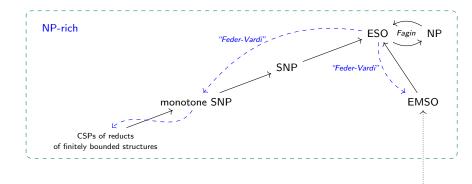


э



of finitely bounded structures





co-HerFO

< ∃ >

Santiago G.P. HER-FO and extensional ESO

æ

F-free edge-completion: Given a graph G test whether it is possible to add edges to G so that it becomes F-free.

Ex 1. Acyclic digraphs: extend the edge relation to a (strict) linear order.

高 と く ヨ と く ヨ と

3

Edge-completion to ϕ **:** Given a graph *G* test whether it is possible to add edges so that it satisfies ϕ .

Ex 2. (Pach, 1971) A graph G has circular chromatic number < 3 iff G can be extended to a maximal triangle-free graphs that avoids:

Petersen minus vertex

★ ∃ ► < ∃ ►</p>

Extensional ESO is the fragment of ESO

$$\exists R_1 \dots, R_k. \left[\bigwedge_{i \in [n]} \forall \bar{x} R'_i(x) \implies R(\bar{x}) \right] \land \phi$$

回 とくほとくほとう

э

Extensional ESO is the fragment of ESO

$$\exists R_1 \dots, R_k. \left[\bigwedge_{i \in [n]} \forall \bar{x} R'_i(x) \implies R(\bar{x}) \right] \land \phi$$

Non-Ex $\exists W, B. \forall x (W(x) \Leftrightarrow \neg B(x)) \land \operatorname{Ind}(W) \land \operatorname{Ind}(B)$

Ex 3. $\exists W, B. \forall x. W'(x) \Rightarrow W(x) \land B'(x) \Rightarrow B(x) \land \phi.$

伺 ト イヨ ト イヨ ト

3

Extensional ESO is the fragment of ESO

$$\exists R_1 \dots, R_k. \left[\bigwedge_{i \in [n]} \forall \bar{x} R'_i(x) \implies R(\bar{x}) \right] \land \phi$$

Non-Ex $\exists W, B. \forall x (W(x) \Leftrightarrow \neg B(x)) \land \operatorname{Ind}(W) \land \operatorname{Ind}(B)$

Ex 3. Pre-coloured $CSP(\mathbb{A})$ is in extensional ESO for every finite \mathbb{A} .

伺 と く ヨ と く ヨ と

Extensional ESO is the fragment of ESO

$$\exists R_1 \dots, R_k. \left[\bigwedge_{i \in [n]} \forall \bar{x} R'_i(x) \implies R(\bar{x}) \right] \land \phi$$

Non-Ex $\exists W, B. \forall x (W(x) \Leftrightarrow \neg B(x)) \land \operatorname{Ind}(W) \land \operatorname{Ind}(B).$

Ex 3. Pre-coloured CSP(\mathbb{A}) is in extensional ESO for every finite \mathbb{A} .

Ex 4. A graph G is k-colourable iff it has a $\{K_1 + K_2, K_{k+1}\}$ -free extension.

何 ト イヨ ト イヨ ト

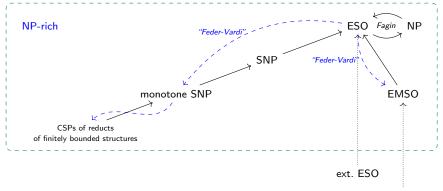
Extensional ESO is the fragment of ESO

$$\exists R_1 \dots, R_k. \left[\bigwedge_{i \in [n]} \forall \bar{x} R'_i(x) \implies R(\bar{x}) \right] \land \phi$$

Non-Ex $\exists W, B. \forall x (W(x) \Leftrightarrow \neg B(x)) \land \operatorname{Ind}(W) \land \operatorname{Ind}(B).$

- **Ex 3.** Pre-coloured CSP(\mathbb{A}) is in extensional ESO for every finite \mathbb{A} .
- **Ex 4.** $CSP(\mathbb{A})$ and $surj-CSP(\mathbb{A})$ are in extensional ESO for every finite \mathbb{A} .

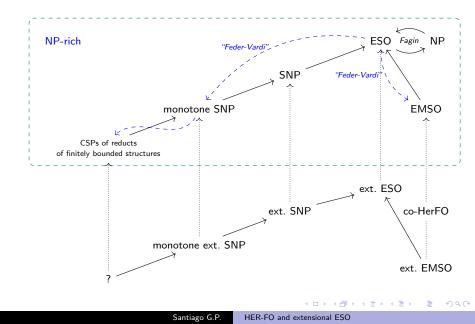
何 ト イヨ ト イヨ ト

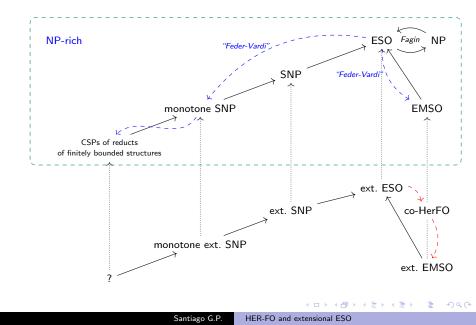


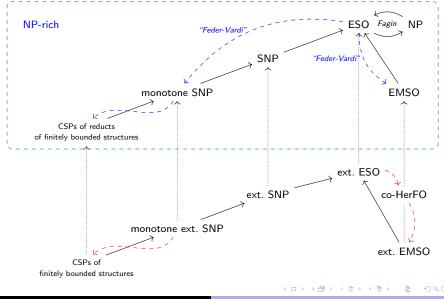
co-HerFO

э

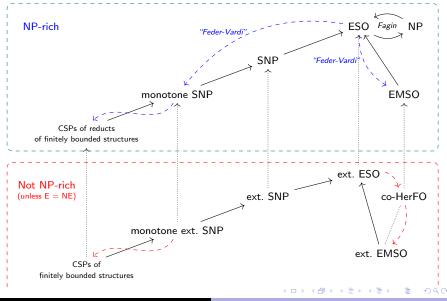
< 同 > < 国 > < 国 >







Santiago G.P. HER-FO and extensional ESO



Santiago G.P. HER-FO and extensional ESO

Thank you for your attention!

Santiago G.P. HER-FO and extensional ESO

* 注 > * 注 >