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Graph modification problems

Edge-modification

For a fixed graph class C and an input graph G determine the minimum
number of edge modifications to G so that it belongs to C.

▶ Edge-deletion problems (Yanakkakis 1981).

▶ Hardness of Edge-Modification problems (Alon, Stav 2009).

▶ Dichotomy Results on the Hardness of H-free Edge Modification Problems
(Aravind, Sandeep, Sivadasan 2017).

▶ Hardness of approximation for H-free edge modification problems (Bliznets,
Cygan, Komosa, Pilipczuk 2018)
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Graph modification problems

Resilience problems

For a fixed query µ, determine the resilience of µ in an input database D.

▶ The Complexity of Resilience and Responsibility for Self-Join-Free Conjunctive
Queries (Freire, Gatterbauer, Immerman, Meliou 2015)

▶ New Results for the Complexity of Resilience for Binary with Self-Joins (Freire,
Gatterbauer, Immerman, Meliou 2020).

▶ A Unified Approach for Resilience and Causal Responsibility with Integer Linear
Programming (ILP) and LP Relaxations. (Makhija, Gatterbauer 2023).

▶ The Complexity of Resilience Problems via Valued Constraint Satisfaction
(Bodirsky, Semanǐsinová, Lutz 2024).
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Graph modification problems

Vertex-deletion

For a fixed graph class C and an input graph G determine the minimum k so
that G − U belongs to C for some |U| ≤ k.

▶ Node-Deletion NP-Complete Problems (Krishnamoorthy, Deo 1979)

▶ The node-deletion problem for hereditary properties is NP-complete (Lewis,
Yanakkakis 1980).

▶ Finding odd-cycle transversals (Reed, Smith, Vetta 2004)

▶ On the Descriptive Complexity of Vertex Deletion Problems (Bannach,
Chudigiewitsch, Tantau 2024)

Santiago G.P. HER-FO and extensional ESO



Graph modification problems

Modification to first-order logic

Edge-modification: Given a graph G and a positive integer k test whether it is
possible to modify at most k edges so that it satisfies ϕ.

Edge-completion: Given a graph G and a positive integer k test whether it is possible
to add at most k edges from G so that it satisfies ϕ.

Edge-deletion: Given a graph G and a positive integer k test whether it is possible to
remove at most k edges from G so that it satisfies ϕ.

Vertex-deletion: Given a graph G and a positive integer k test whether it is possible
to remove at most k vertices from G so that it satisfies ϕ.

On the parameterized complexity of graph modification to first-order logic properties (Fomin, Golovach, Thilikos

2020)
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Graph modification problems

Modification to first-order logic (without parameter k)

Edge-modification: Given a graph G test whether we can modify the edges of G so
that it satisfies ϕ.

Edge-completion: Given a graph G test whether we can add edges to G so that it
satisfies ϕ.

Edge-deletion: Given a graph G test whether we can remove edges from G so that it
satisfies ϕ.

Vertex-deletion: Given a graph G test whether we can remove vertices of G so that it
satisfies ϕ.

On the parameterized complexity of graph modification to first-order logic properties (Fomin, Golovach, Thilikos
2020)
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Hereditary first-order logic

A structure A hereditarily satisfies ϕ if every (induced) substructure A′ of A
satisfies ϕ.

Obs. A hereditarily satisfies ϕ iff (A, k) is a no-instance of vertex-deletion to
¬ϕ whenever k ≤ |A| − 1.

Ex. 1 Forests: ϕ := exists a vertex of degree 1.

Ex. 2 Chordal graphs: ϕ := exists a simplicial vertex (Rose, 1970).

Ex. 3 Acyclic digraphs: ϕ := exists a source.
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Hereditary first-order logic

Ex. 4 CSP(→→) is in HerFO.

. . .

. . .

Non-Ex. CSP(K2) is not in HerFO.
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Hereditary first-order logic

Obs. Every problem in HerFO is expressible in UMSO: A hereditarily satisfies ϕ
if and only if

A |= ∀S . S ̸= A =⇒ ϕS

Qst. Is every problem in HerFO solvable in polynomial-time?

Lem. If the quantifier prefix of ϕ is of the form ∀∗∃∀∗ or ∀∗∃∗, then Her(ϕ) is
in P and in SNP.
Thm. If the quantifier prefix of ϕ is of the form ∀∗∃∀∗ or ∀∗∃∗, then Her(ϕ) is
in P and in SNP. For every other quantifier prefix Q, there is an FO formula ϕ
with quantifier prefix Q such that Her(ϕ) is coNP-complete.
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Hereditary first-order logic

“Qst.” What is the computational power of HerFO?
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Existential Second-Order Logic

ESO NP

SNP

EMSOmonotone SNP

CSPs of reducts

of finitely bounded structures

Fagin

NP-rich
“Feder-Vardi”

“Feder-Vardi”

co-HerFO
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Extensional ESO
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Extensional ESO

F-free edge-completion: Given a graph G test whether it is possible to add
edges to G so that it becomes F -free.

Ex 1. Acyclic digraphs: extend the edge relation to a (strict) linear order.

F
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Extensional ESO

Edge-completion to ϕ: Given a graph G test whether it is possible to add
edges so that it satisfies ϕ.

Ex 2. (Pach, 1971) A graph G has circular chromatic number < 3 iff G can be
extended to a maximal triangle-free graphs that avoids:

Petersen minus vertex
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Extensional ESO

Extensional ESO is the fragment of ESO

∃R1 . . . ,Rk .

∧
i∈[n]

∀x̄R ′
i (x) =⇒ R(x̄)

 ∧ ϕ

Non-Ex ∃W ,B. ∀x , y . (W (x) ⇔ ¬B(x)) ∧ Ind(W ) ∧ Ind(B)

Ex 3. ∃W ,B. ∀x , y . W ′(x) ⇒ W (x) ∧ B ′(x) ⇒ B(x) ∧ Ind(W ) ∧ Ind(B)
(pre-coloured CSP(K2))

Ex 4. A graph G is k-colourable iff it has a {K1 + K2,Kk+1}-free completion

Lem. CSP(A) and surj-CSP(A) are in extensional ESO for every finite A.
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Extensional ESO

NP-rich ESO NP
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EMSOmonotone SNP

CSPs of reducts

of finitely bounded structures
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co-HerFO

ext. ESO

ext. SNP

ext. EMSO

monotone ext. SNP

?
finitely bounded structures

Santiago G.P. HER-FO and extensional ESO



Extensional ESO

NP-rich ESO NP

SNP

EMSOmonotone SNP

CSPs of reducts

of finitely bounded structures

Fagin
“Feder-Vardi”

“Feder-Vardi”

co-HerFO

ext. ESO

ext. SNP

ext. EMSO

monotone ext. SNP

?

finitely bounded structures

Santiago G.P. HER-FO and extensional ESO



Extensional ESO

NP-rich ESO NP

SNP

EMSOmonotone SNP

CSPs of reducts

of finitely bounded structures

ext. ESO

Fagin
“Feder-Vardi”

“Feder-Vardi”

co-HerFOext. SNP

ext. EMSO

monotone ext. SNP

?

finitely bounded structures

Not NP-rich
(unless E = NE)

Santiago G.P. HER-FO and extensional ESO



Extensional ESO

NP-rich ESO NP

SNP

EMSOmonotone SNP

CSPs of reducts

of finitely bounded structures

ext. ESO

Fagin
“Feder-Vardi”

“Feder-Vardi”

co-HerFOext. SNP

ext. EMSO

monotone ext. SNP

CSPs of

finitely bounded structures

Not NP-rich
(unless E = NE)

Santiago G.P. HER-FO and extensional ESO



Extensional ESO
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Thank you for your attention!
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