
Logic and the Power of Recurrent
Graph Neural Networks

Martin Grohe



Graph Neural Networks

2



Graph Neural Networks
▶ Graph neural networks (GNNs) are deep learning architectures for machine

learning problems on graphs.

▶ A GNN may be viewed as distributed message passing algorithm operating on
the vertices of its input graph. The algorithm is controlled by parameters
typically learned from data.

▶ In this talk, we study the expressiveness of GNNs:
Which functions on graphs can be computed by a GNN?

3



Graph Neural Networks
▶ Graph neural networks (GNNs) are deep learning architectures for machine

learning problems on graphs.
▶ A GNN may be viewed as distributed message passing algorithm operating on

the vertices of its input graph. The algorithm is controlled by parameters
typically learned from data.

▶ In this talk, we study the expressiveness of GNNs:
Which functions on graphs can be computed by a GNN?

3



Graph Neural Networks
▶ Graph neural networks (GNNs) are deep learning architectures for machine

learning problems on graphs.
▶ A GNN may be viewed as distributed message passing algorithm operating on

the vertices of its input graph. The algorithm is controlled by parameters
typically learned from data.

▶ In this talk, we study the expressiveness of GNNs:
Which functions on graphs can be computed by a GNN?

3



Computation of GNNs

GNN N with d layers maps graph G to sequence of
signals

s(t) : V (G )→ Rpt for t = 0, . . . , d

Initialisation: s(0)(v) ∈ Rp0 encodes node labels or initial signal on the graph.

Aggregation: a(t)(v) := aggt

({{
s(t−1)(w)

∣∣∣ w ∈ NG (v)
}})

▶ aggt aggregation function: coordinatewise sum, mean or max

Combination: s(t)(v) := combt
(
s(t−1)(v),a(t)(v)

)
▶ combt : R2pt−1 → Rpt combination function computed by a feedforward

neural network (a.k.a. multilayer perceptron)

4



Computation of GNNs

GNN N with d layers maps graph G to sequence of
signals

s(t) : V (G )→ Rpt for t = 0, . . . , d

Initialisation: s(0)(v) ∈ Rp0 encodes node labels or initial signal on the graph.

Aggregation: a(t)(v) := aggt

({{
s(t−1)(w)

∣∣∣ w ∈ NG (v)
}})

▶ aggt aggregation function: coordinatewise sum, mean or max

Combination: s(t)(v) := combt
(
s(t−1)(v),a(t)(v)

)
▶ combt : R2pt−1 → Rpt combination function computed by a feedforward

neural network (a.k.a. multilayer perceptron)

4



Computation of GNNs

GNN N with d layers maps graph G to sequence of
signals

s(t) : V (G )→ Rpt for t = 0, . . . , d

Initialisation: s(0)(v) ∈ Rp0 encodes node labels or initial signal on the graph.

Aggregation: a(t)(v) := aggt

({{
s(t−1)(w)

∣∣∣ w ∈ NG (v)
}})

▶ aggt aggregation function: coordinatewise sum, mean or max

Combination: s(t)(v) := combt
(
s(t−1)(v),a(t)(v)

)
▶ combt : R2pt−1 → Rpt combination function computed by a feedforward

neural network (a.k.a. multilayer perceptron)

4



Computation of GNNs

GNN N with d layers maps graph G to sequence of
signals

s(t) : V (G )→ Rpt for t = 0, . . . , d

Initialisation: s(0)(v) ∈ Rp0 encodes node labels or initial signal on the graph.

Aggregation: a(t)(v) := aggt

({{
s(t−1)(w)

∣∣∣ w ∈ NG (v)
}})

▶ aggt aggregation function: coordinatewise sum, mean or max

Combination: s(t)(v) := combt
(
s(t−1)(v),a(t)(v)

)
▶ combt : R2pt−1 → Rpt combination function computed by a feedforward

neural network (a.k.a. multilayer perceptron)

4



Computation of GNNs

GNN N with d layers maps graph G to sequence of
signals

s(t) : V (G )→ Rpt for t = 0, . . . , d

Initialisation: s(0)(v) ∈ Rp0 encodes node labels or initial signal on the graph.

Aggregation: a(t)(v) := aggt

({{
s(t−1)(w)

∣∣∣ w ∈ NG (v)
}})

▶ aggt aggregation function: coordinatewise sum, mean or max

Combination: s(t)(v) := combt
(
s(t−1)(v),a(t)(v)

)
▶ combt : R2pt−1 → Rpt combination function computed by a feedforward

neural network (a.k.a. multilayer perceptron)

4



Computation of GNNs

GNN N with d layers maps graph G to sequence of
signals

s(t) : V (G )→ Rpt for t = 0, . . . , d

Initialisation: s(0)(v) ∈ Rp0 encodes node labels or initial signal on the graph.

Aggregation: a(t)(v) := aggt

({{
s(t−1)(w)

∣∣∣ w ∈ NG (v)
}})

▶ aggt aggregation function: coordinatewise sum, mean or max

Combination: s(t)(v) := combt
(
s(t−1)(v),a(t)(v)

)
▶ combt : R2pt−1 → Rpt combination function computed by a feedforward

neural network (a.k.a. multilayer perceptron)

4



Feedforward Neural Networks

x1 x2 x3 x4

y1 y2 y3

▶ Nodes and edges are weighted.
▶ Node with weight b ∈ R and

incoming edges with weights
w1, . . . ,wk ∈ R computes function

x1, . . . , xk 7→ σ

(
b +

k∑
i=1

wixi

)
,

where σ : R→ R is the activation
function.

Typical activation functions are:

4 2 0 2 4
0

1

2

3

4

5

rectified linear unit (ReLU)

5



Feedforward Neural Networks

x1 x2 x3 x4

y1 y2 y3

▶ Nodes and edges are weighted.

▶ Node with weight b ∈ R and
incoming edges with weights
w1, . . . ,wk ∈ R computes function

x1, . . . , xk 7→ σ

(
b +

k∑
i=1

wixi

)
,

where σ : R→ R is the activation
function.

Typical activation functions are:

4 2 0 2 4
0

1

2

3

4

5

rectified linear unit (ReLU)

5



Feedforward Neural Networks

w1 w2 w3 w4 w5

b

▶ Nodes and edges are weighted.
▶ Node with weight b ∈ R and

incoming edges with weights
w1, . . . ,wk ∈ R computes function

x1, . . . , xk 7→ σ

(
b +

k∑
i=1

wixi

)
,

where σ : R→ R is the activation
function.

Typical activation functions are:

4 2 0 2 4
0

1

2

3

4

5

rectified linear unit (ReLU)

5



Feedforward Neural Networks

w1 w2 w3 w4 w5

b

▶ Nodes and edges are weighted.
▶ Node with weight b ∈ R and

incoming edges with weights
w1, . . . ,wk ∈ R computes function

x1, . . . , xk 7→ σ

(
b +

k∑
i=1

wixi

)
,

where σ : R→ R is the activation
function.

Typical activation functions are:

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

sigmoid

4 2 0 2 4

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

hyperbolic tangent
4 2 0 2 4

0

1

2

3

4

5

rectified linear unit (ReLU)
5



Feedforward Neural Networks

w1 w2 w3 w4 w5

b

▶ Nodes and edges are weighted.
▶ Node with weight b ∈ R and

incoming edges with weights
w1, . . . ,wk ∈ R computes function

x1, . . . , xk 7→ σ

(
b +

k∑
i=1

wixi

)
,

where σ : R→ R is the activation
function.

Typical activation functions are:

In this talk, we always use

ReLu(x) := max{0, x}

as activation function.
4 2 0 2 4

0

1

2

3

4

5

rectified linear unit (ReLU)
5



Universal Approximation Theorem

Theorem (Cybenko 1989, Hornik 1991)
Let f : K → Rn be a continuous function defined on a compact set K ⊆ Rm.
Then for every ϵ > 0 there is a feedforward neural network N computing a function
fN such that

sup
x∈K
∥f (x)− fN(x)∥ < ϵ.

6



Computation of GNNs (revisited)

GNN N with d layers maps graph G to sequence of signals

s(t) : V (G )→ Rpt for t = 0, . . . , d

Initialisation: s(0)(v) ∈ Rp0 encodes node labels or initial signal on the graph.

Aggregation: a(t)(v) := aggt

({{
s(t−1)(w)

∣∣∣ w ∈ NG (v)
}})

▶ aggt aggregation function: coordinatewise sum, mean or max

Combination: s(t)(v) := combt
(
s(t−1)(v),a(t)(v)

)
▶ combt : R2pt−1 → Rpt combination function computed by a feedforward

neural network (a.k.a. multilayer perceptron)

7



Two Extensions

Global Aggregation

g(t) := agg′t
({{

s(t−1)(w)
∣∣ w ∈ V (G )

}})
,

where the aggregation function agg′t is coordinatewise sum, mean or max.

Then combination becomes

s(t)(v) := combt
(
s(t−1)(v),a(t)(v),g(t))

with combt : R3pt−1 → Rpt computed by feedforward neural network.

Random Initialisation
s(0)(v) = (s1, . . . , sp0 , sp0+1) ∈ Rp0+1 where (s1, . . . , sp0) endodes node labels or
initial signal and sp0+1 is chosen uniformly at random from [0, 1].

In this talk, we always consider GNNs with global aggregation. We sometimes
consider random initialisation, but mention it explicitly when we do.

8



Two Extensions

Global Aggregation

g(t) := agg′t
({{

s(t−1)(w)
∣∣ w ∈ V (G )

}})
,

where the aggregation function agg′t is coordinatewise sum, mean or max.

Then combination becomes

s(t)(v) := combt
(
s(t−1)(v),a(t)(v),g(t))

with combt : R3pt−1 → Rpt computed by feedforward neural network.

Random Initialisation
s(0)(v) = (s1, . . . , sp0 , sp0+1) ∈ Rp0+1 where (s1, . . . , sp0) endodes node labels or
initial signal and sp0+1 is chosen uniformly at random from [0, 1].

In this talk, we always consider GNNs with global aggregation. We sometimes
consider random initialisation, but mention it explicitly when we do.

8



Two Extensions

Global Aggregation

g(t) := agg′t
({{

s(t−1)(w)
∣∣ w ∈ V (G )

}})
,

where the aggregation function agg′t is coordinatewise sum, mean or max.

Then combination becomes

s(t)(v) := combt
(
s(t−1)(v),a(t)(v),g(t))

with combt : R3pt−1 → Rpt computed by feedforward neural network.

Random Initialisation
s(0)(v) = (s1, . . . , sp0 , sp0+1) ∈ Rp0+1 where (s1, . . . , sp0) endodes node labels or
initial signal and sp0+1 is chosen uniformly at random from [0, 1].

In this talk, we always consider GNNs with global aggregation. We sometimes
consider random initialisation, but mention it explicitly when we do.

8



Two Extensions

Global Aggregation

g(t) := agg′t
({{

s(t−1)(w)
∣∣ w ∈ V (G )

}})
,

where the aggregation function agg′t is coordinatewise sum, mean or max.

Then combination becomes

s(t)(v) := combt
(
s(t−1)(v),a(t)(v),g(t))

with combt : R3pt−1 → Rpt computed by feedforward neural network.

Random Initialisation
s(0)(v) = (s1, . . . , sp0 , sp0+1) ∈ Rp0+1 where (s1, . . . , sp0) endodes node labels or
initial signal and sp0+1 is chosen uniformly at random from [0, 1].

In this talk, we always consider GNNs with global aggregation. We sometimes
consider random initialisation, but mention it explicitly when we do.

8



Functions Computed by GNNs

Node-Level Functions
GNNs compute a function f that maps each graph G (possibly with node labels or
an initial signal) to a signal f(G , ·) : V (G )→ Rq defined by

f(G , v) = s(d)(v).

Graph-Level Functions
To compute a function F : G→ Rq mapping graphs to vectors of real numbers, we
aggregate the values and then apply a readout function:

F(G ) = ro
(
agg
({{

s(d)(v)
∣∣∣ v ∈ V (G )

}})
.

▶ agg aggregation function: sum, mean or max
▶ ro : Rp → Rq readout function computed by a feedforward neural network

9



Functions Computed by GNNs

Node-Level Functions
GNNs compute a function f that maps each graph G (possibly with node labels or
an initial signal) to a signal f(G , ·) : V (G )→ Rq defined by

f(G , v) = s(d)(v).

Graph-Level Functions
To compute a function F : G→ Rq mapping graphs to vectors of real numbers,

we
aggregate the values and then apply a readout function:

F(G ) = ro
(
agg
({{

s(d)(v)
∣∣∣ v ∈ V (G )

}})
.

▶ agg aggregation function: sum, mean or max
▶ ro : Rp → Rq readout function computed by a feedforward neural network

9



Functions Computed by GNNs

Node-Level Functions
GNNs compute a function f that maps each graph G (possibly with node labels or
an initial signal) to a signal f(G , ·) : V (G )→ Rq defined by

f(G , v) = s(d)(v).

Graph-Level Functions
To compute a function F : G

class of all graphs

→ Rq mapping graphs to vectors of real numbers,

we
aggregate the values and then apply a readout function:

F(G ) = ro
(
agg
({{

s(d)(v)
∣∣∣ v ∈ V (G )

}})
.

▶ agg aggregation function: sum, mean or max
▶ ro : Rp → Rq readout function computed by a feedforward neural network

9



Functions Computed by GNNs

Node-Level Functions
GNNs compute a function f that maps each graph G (possibly with node labels or
an initial signal) to a signal f(G , ·) : V (G )→ Rq defined by

f(G , v) = s(d)(v).

Graph-Level Functions
To compute a function F : G→ Rq mapping graphs to vectors of real numbers, we
aggregate the values and then apply a readout function:

F(G ) = ro
(
agg
({{

s(d)(v)
∣∣∣ v ∈ V (G )

}})
.

▶ agg aggregation function: sum, mean or max
▶ ro : Rp → Rq readout function computed by a feedforward neural network

9



Invariance
In this talk, we focus on graph-level functions.

Invariance
Let F : G→ Rq be computed by a GNN. Then for all isomorphic graphs G ,H,

F(G ) = F(H).

Graph Properties
When comparing GNNs with logic and circuit complexity, we often look at
(isomorphism invariant) Boolean functions P : G→ {0, 1}, that is, properties of
graphs.

Remark
GNNs with random initialisation compute an isomorphism invariant random variable.

To compute a function, we can run the GNN several times with independent random
initialisations and then take the average value, or for Boolean functions, the majority.

10



Invariance
In this talk, we focus on graph-level functions.

Invariance
Let F : G→ Rq be computed by a GNN. Then for all isomorphic graphs G ,H,

F(G ) = F(H).

Graph Properties
When comparing GNNs with logic and circuit complexity, we often look at
(isomorphism invariant) Boolean functions P : G→ {0, 1}, that is, properties of
graphs.

Remark
GNNs with random initialisation compute an isomorphism invariant random variable.

To compute a function, we can run the GNN several times with independent random
initialisations and then take the average value, or for Boolean functions, the majority.

10



Invariance
In this talk, we focus on graph-level functions.

Invariance
Let F : G→ Rq be computed by a GNN. Then for all isomorphic graphs G ,H,

F(G ) = F(H).

Graph Properties
When comparing GNNs with logic and circuit complexity, we often look at
(isomorphism invariant) Boolean functions P : G→ {0, 1}, that is, properties of
graphs.

Remark
GNNs with random initialisation compute an isomorphism invariant random variable.

To compute a function, we can run the GNN several times with independent random
initialisations and then take the average value, or for Boolean functions, the majority.

10



Invariance
In this talk, we focus on graph-level functions.

Invariance
Let F : G→ Rq be computed by a GNN. Then for all isomorphic graphs G ,H,

F(G ) = F(H).

Graph Properties
When comparing GNNs with logic and circuit complexity, we often look at
(isomorphism invariant) Boolean functions P : G→ {0, 1}, that is, properties of
graphs.

Remark
GNNs with random initialisation compute an isomorphism invariant random variable.

To compute a function, we can run the GNN several times with independent random
initialisations and then take the average value, or for Boolean functions, the majority.

10



Invariance
In this talk, we focus on graph-level functions.

Invariance
Let F : G→ Rq be computed by a GNN. Then for all isomorphic graphs G ,H,

F(G ) = F(H).

Graph Properties
When comparing GNNs with logic and circuit complexity, we often look at
(isomorphism invariant) Boolean functions P : G→ {0, 1}, that is, properties of
graphs.

Remark
GNNs with random initialisation compute an isomorphism invariant random variable.

To compute a function, we can run the GNN several times with independent random
initialisations and then take the average value, or for Boolean functions, the majority.

10



The Logic of GNNs

11



2-Variable Counting Logic
C2

FO2+C

}
2-variable fragments of first-order logic with counting quantifiers ∃≥nxϕ

Difference:
▶ in C2, the number n in a counting quantifier ∃≥nx is a constant;
▶ in FO2+C it is a variable or term, and we allow arithmetic on such number terms.

Example
▶ A C2-formula expressing that vertex x has degree 8:

∃≥8yE (x , y) ∧ ¬∃≥9yE (x , y).

▶ An FO2+C-formula expressing that vertex x has even degree:

∃n
(
∃≥2ny E (x , y) ∧ ¬∃≥2n+1y E (x , y)

)
.

12



2-Variable Counting Logic
C2

FO2+C

}
2-variable fragments of first-order logic with counting quantifiers ∃≥nxϕ

Difference:
▶ in C2, the number n in a counting quantifier ∃≥nx is a constant;

▶ in FO2+C it is a variable or term, and we allow arithmetic on such number terms.

Example
▶ A C2-formula expressing that vertex x has degree 8:

∃≥8yE (x , y) ∧ ¬∃≥9yE (x , y).

▶ An FO2+C-formula expressing that vertex x has even degree:

∃n
(
∃≥2ny E (x , y) ∧ ¬∃≥2n+1y E (x , y)

)
.

12



2-Variable Counting Logic
C2

FO2+C

}
2-variable fragments of first-order logic with counting quantifiers ∃≥nxϕ

Difference:
▶ in C2, the number n in a counting quantifier ∃≥nx is a constant;
▶ in FO2+C it is a variable or term, and we allow arithmetic on such number terms.

Example
▶ A C2-formula expressing that vertex x has degree 8:

∃≥8yE (x , y) ∧ ¬∃≥9yE (x , y).

▶ An FO2+C-formula expressing that vertex x has even degree:

∃n
(
∃≥2ny E (x , y) ∧ ¬∃≥2n+1y E (x , y)

)
.

12



2-Variable Counting Logic
C2

FO2+C

}
2-variable fragments of first-order logic with counting quantifiers ∃≥nxϕ

Difference:
▶ in C2, the number n in a counting quantifier ∃≥nx is a constant;
▶ in FO2+C it is a variable or term, and we allow arithmetic on such number terms.

Example
▶ A C2-formula expressing that vertex x has degree 8:

∃≥8yE (x , y) ∧ ¬∃≥9yE (x , y).

▶ An FO2+C-formula expressing that vertex x has even degree:

∃n
(
∃≥2ny E (x , y) ∧ ¬∃≥2n+1y E (x , y)

)
.

12



2-Variable Counting Logic
C2

FO2+C

}
2-variable fragments of first-order logic with counting quantifiers ∃≥nxϕ

Difference:
▶ in C2, the number n in a counting quantifier ∃≥nx is a constant;
▶ in FO2+C it is a variable or term, and we allow arithmetic on such number terms.

Example
▶ A C2-formula expressing that vertex x has degree 8:

∃≥8yE (x , y) ∧ ¬∃≥9yE (x , y).

▶ An FO2+C-formula expressing that vertex x has even degree:

∃n
(
∃≥2ny E (x , y) ∧ ¬∃≥2n+1y E (x , y)

)
.

12



C2-Equivalence

For every logic L, two graphs are L-equivalent if they satisfy the same sentences of L.

Theorem (Immerman and Lander 1990, Tinhofer 1991, Dvorak 2010)
For all graphs G ,H, the following are equivalent:

1. G ,H are C2-equivalent.

2. G ,H are FO2+C-equivalent.

3. The Colour Refinement algorithm does not distinguish G ,H.

4. G and H are fractionally isomorphic, that is, there is a doubly stochastic matrix
X such that AGX = XAH .

5. For all trees T , the number of homomorphisms from T to G equals the number
of homomorphisms from T to H.

13



C2-Equivalence

For every logic L, two graphs are L-equivalent if they satisfy the same sentences of L.

Theorem (Immerman and Lander 1990, Tinhofer 1991, Dvorak 2010)
For all graphs G ,H, the following are equivalent:

1. G ,H are C2-equivalent.

2. G ,H are FO2+C-equivalent.

3. The Colour Refinement algorithm does not distinguish G ,H.

4. G and H are fractionally isomorphic, that is, there is a doubly stochastic matrix
X such that AGX = XAH .

5. For all trees T , the number of homomorphisms from T to G equals the number
of homomorphisms from T to H.

13



C2-Equivalence

For every logic L, two graphs are L-equivalent if they satisfy the same sentences of L.

Theorem (Immerman and Lander 1990, Tinhofer 1991, Dvorak 2010)
For all graphs G ,H, the following are equivalent:

1. G ,H are C2-equivalent.

2. G ,H are FO2+C-equivalent.

3. The Colour Refinement algorithm does not distinguish G ,H.

4. G and H are fractionally isomorphic, that is, there is a doubly stochastic matrix
X such that AGX = XAH .

5. For all trees T , the number of homomorphisms from T to G equals the number
of homomorphisms from T to H.

13



C2-Equivalence

For every logic L, two graphs are L-equivalent if they satisfy the same sentences of L.

Theorem (Immerman and Lander 1990, Tinhofer 1991, Dvorak 2010)
For all graphs G ,H, the following are equivalent:

1. G ,H are C2-equivalent.

2. G ,H are FO2+C-equivalent.

3. The Colour Refinement algorithm does not distinguish G ,H.

4. G and H are fractionally isomorphic, that is, there is a doubly stochastic matrix
X such that AGX = XAH .

5. For all trees T , the number of homomorphisms from T to G equals the number
of homomorphisms from T to H.

13



C2-Equivalence

For every logic L, two graphs are L-equivalent if they satisfy the same sentences of L.

Theorem (Immerman and Lander 1990, Tinhofer 1991, Dvorak 2010)
For all graphs G ,H, the following are equivalent:

1. G ,H are C2-equivalent.

2. G ,H are FO2+C-equivalent.

3. The Colour Refinement algorithm does not distinguish G ,H.

4. G and H are fractionally isomorphic, that is, there is a doubly stochastic matrix
X such that AGX = XAH .

5. For all trees T , the number of homomorphisms from T to G equals the number
of homomorphisms from T to H.

13



Colour Refinement

The Colour Refinement algorithm iteratively computes a colouring of the vertices of
graph G .

Initialisation All vertices get the same colour.

Refinement Step Two nodes v ,w get different colours if there is some colour c
such that v and w have different numbers of neighbours of colour c .

Refinement is repeated until colouring stays stable.

Remark
The algorithm is also refered to as naive vertex classification and as 1-dimensional
Weisfeiler-Leman algorithm. One needs to be careful though, because there are two
slightly different versions of the algorithm, and this difference does play a role in our
work (though not in this talk).

14



Colour Refinement

The Colour Refinement algorithm iteratively computes a colouring of the vertices of
graph G .

Initialisation All vertices get the same colour.

Refinement Step Two nodes v ,w get different colours if there is some colour c
such that v and w have different numbers of neighbours of colour c .

Refinement is repeated until colouring stays stable.

Remark
The algorithm is also refered to as naive vertex classification and as 1-dimensional
Weisfeiler-Leman algorithm. One needs to be careful though, because there are two
slightly different versions of the algorithm, and this difference does play a role in our
work (though not in this talk).

14



Colour Refinement

The Colour Refinement algorithm iteratively computes a colouring of the vertices of
graph G .

Initialisation All vertices get the same colour.

Refinement Step Two nodes v ,w get different colours if there is some colour c
such that v and w have different numbers of neighbours of colour c .

Refinement is repeated until colouring stays stable.

Remark
The algorithm is also refered to as naive vertex classification and as 1-dimensional
Weisfeiler-Leman algorithm. One needs to be careful though, because there are two
slightly different versions of the algorithm, and this difference does play a role in our
work (though not in this talk).

14



Colour Refinement

The Colour Refinement algorithm iteratively computes a colouring of the vertices of
graph G .

Initialisation All vertices get the same colour.

Refinement Step Two nodes v ,w get different colours if there is some colour c
such that v and w have different numbers of neighbours of colour c .

Refinement is repeated until colouring stays stable.

Remark
The algorithm is also refered to as naive vertex classification and as 1-dimensional
Weisfeiler-Leman algorithm. One needs to be careful though, because there are two
slightly different versions of the algorithm, and this difference does play a role in our
work (though not in this talk).

14



Colour Refinement

The Colour Refinement algorithm iteratively computes a colouring of the vertices of
graph G .

Initialisation All vertices get the same colour.

Refinement Step Two nodes v ,w get different colours if there is some colour c
such that v and w have different numbers of neighbours of colour c .

Refinement is repeated until colouring stays stable.

Remark
The algorithm is also refered to as naive vertex classification and as 1-dimensional
Weisfeiler-Leman algorithm. One needs to be careful though, because there are two
slightly different versions of the algorithm, and this difference does play a role in our
work (though not in this talk).

14



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Distinguishing Graphs by Colour Refinement

Colour Refinement distinguishes two graphs G ,H if their colour histograms differ,
that is, some colour appears a different number of times in G and H.

Thus Colour Refinement can be used as an incomplete isomorphism test.
▶ works on almost all graphs (Babai, Erdös, Selkow 1980)
▶ fails on some very simple graphs:

16



Distinguishing Graphs by Colour Refinement

Colour Refinement distinguishes two graphs G ,H if their colour histograms differ,
that is, some colour appears a different number of times in G and H.

Thus Colour Refinement can be used as an incomplete isomorphism test.

▶ works on almost all graphs (Babai, Erdös, Selkow 1980)
▶ fails on some very simple graphs:

16



Distinguishing Graphs by Colour Refinement

Colour Refinement distinguishes two graphs G ,H if their colour histograms differ,
that is, some colour appears a different number of times in G and H.

Thus Colour Refinement can be used as an incomplete isomorphism test.
▶ works on almost all graphs (Babai, Erdös, Selkow 1980)

▶ fails on some very simple graphs:

16



Distinguishing Graphs by Colour Refinement

Colour Refinement distinguishes two graphs G ,H if their colour histograms differ,
that is, some colour appears a different number of times in G and H.

Thus Colour Refinement can be used as an incomplete isomorphism test.
▶ works on almost all graphs (Babai, Erdös, Selkow 1980)
▶ fails on some very simple graphs:

16



The Distinguishing Power of GNNs
Theorem (Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, G. 2019,

Xu, Hu, Leskovec, Jegelka 2019)
For all graphs G ,H, the following are equivalent:

1. G and H are C2-equivalent.

2. G and H are not distinguishable by a GNN, that is, for all GNNs N we have
FN(G ) = FN(H);

Corollary
Every function F : G→ Rq computable by a GNN is C2-invariant, that is, if G ,H are
C2-equivalent then F(G ) = F(H).

Remark
(Morris et al. 2019) ensure that graphs G ,H that are not C2-equivalent can be
distinguished by a GNN N of size polynomial in |G |, |H|.

17



The Distinguishing Power of GNNs
Theorem (Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, G. 2019,

Xu, Hu, Leskovec, Jegelka 2019)
For all graphs G ,H, the following are equivalent:

1. G and H are C2-equivalent.

2. G and H are not distinguishable by a GNN, that is, for all GNNs N we have
FN(G ) = FN(H);

Corollary
Every function F : G→ Rq computable by a GNN is C2-invariant, that is, if G ,H are
C2-equivalent then F(G ) = F(H).

Remark
(Morris et al. 2019) ensure that graphs G ,H that are not C2-equivalent can be
distinguished by a GNN N of size polynomial in |G |, |H|.

17



The Distinguishing Power of GNNs
Theorem (Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, G. 2019,

Xu, Hu, Leskovec, Jegelka 2019)
For all graphs G ,H, the following are equivalent:

1. G and H are C2-equivalent.

2. G and H are not distinguishable by a GNN, that is, for all GNNs N we have
FN(G ) = FN(H);

Corollary
Every function F : G→ Rq computable by a GNN is C2-invariant, that is, if G ,H are
C2-equivalent then F(G ) = F(H).

Remark
(Morris et al. 2019) ensure that graphs G ,H that are not C2-equivalent can be
distinguished by a GNN N of size polynomial in |G |, |H|.

17



Expressing Graph Properties

Theorem (Barceló, Kostylev, Monet, Pérez, Reutter, Silva 2019)
Let P be a graph property expressible in the logic C2. Then there is a GNN (with
rational weights) computing P.

Theorem (G. 2023)
Let P be a graph property computable by a GNN with rational weights. Then P is
expressible in in FO2+C.

Corollary

C2 ⊂ GNN ⊂ FO2+C.

It can be shown that both inclusions are strict.

18



Expressing Graph Properties

Theorem (Barceló, Kostylev, Monet, Pérez, Reutter, Silva 2019)
Let P be a graph property expressible in the logic C2. Then there is a GNN (with
rational weights) computing P.

Theorem (G. 2023)
Let P be a graph property computable by a GNN with rational weights. Then P is
expressible in in FO2+C.

Corollary

C2 ⊂ GNN ⊂ FO2+C.

It can be shown that both inclusions are strict.

18



Expressing Graph Properties

Theorem (Barceló, Kostylev, Monet, Pérez, Reutter, Silva 2019)
Let P be a graph property expressible in the logic C2. Then there is a GNN (with
rational weights) computing P.

Theorem (G. 2023)
Let P be a graph property computable by a GNN with rational weights. Then P is
expressible in in FO2+C.

Corollary

C2 ⊂ GNN ⊂ FO2+C.

It can be shown that both inclusions are strict.

18



Expressing Graph Properties

Theorem (Barceló, Kostylev, Monet, Pérez, Reutter, Silva 2019)
Let P be a graph property expressible in the logic C2. Then there is a GNN (with
rational weights) computing P.

Theorem (G. 2023)
Let P be a graph property computable by a GNN with rational weights. Then P is
expressible in in FO2+C.

Corollary

C2 ⊂ GNN ⊂ FO2+C.

It can be shown that both inclusions are strict.

18



Logical Expressiveness of GNN Families

Theorem (G. 2023)
For all graph properties P, the following are equivalent.

1. P is computable by a polynomial-size bounded-depth family of GNNs with
random initialisation and with arbitrary real weights (that may use activations
like sigmoid or tanh besides ReLU).

2. P is computable by a polynomial-size bounded-depth family of GNNs with
random initialisation and with rational weights, using only sum aggregation.

3. P is expressible in FO2+C with built-in relations.

4. P is in the complexity class TC0.

19



Logical Expressiveness of GNN Families

Theorem (G. 2023)
For all graph properties P, the following are equivalent.

1. P is computable by a polynomial-size bounded-depth family of GNNs with
random initialisation and with arbitrary real weights (that may use activations
like sigmoid or tanh besides ReLU).

2. P is computable by a polynomial-size bounded-depth family of GNNs with
random initialisation and with rational weights, using only sum aggregation.

3. P is expressible in FO2+C with built-in relations.

4. P is in the complexity class TC0.

19



Logical Expressiveness of GNN Families

Theorem (G. 2023)
For all graph properties P, the following are equivalent.

1. P is computable by a polynomial-size bounded-depth family of GNNs with
random initialisation and with arbitrary real weights (that may use activations
like sigmoid or tanh besides ReLU).

2. P is computable by a polynomial-size bounded-depth family of GNNs with
random initialisation and with rational weights, using only sum aggregation.

3. P is expressible in FO2+C with built-in relations.

4. P is in the complexity class TC0.

19



Logical Expressiveness of GNN Families

Theorem (G. 2023)
For all graph properties P, the following are equivalent.

1. P is computable by a polynomial-size bounded-depth family of GNNs with
random initialisation and with arbitrary real weights (that may use activations
like sigmoid or tanh besides ReLU).

2. P is computable by a polynomial-size bounded-depth family of GNNs with
random initialisation and with rational weights, using only sum aggregation.

3. P is expressible in FO2+C with built-in relations.

4. P is in the complexity class TC0.

19



Recurrent GNNs

20



Recurrent GNNs
So far, GNNs have a fixed number d of layers, and each layer t has its own functions
aggt , agg′t , combt .

Recurrent GNN Computation
A recurrent GNN has a single layer and applies it repeatedly. That is, we have
aggregation functions agg, agg′ and a combination function comb and for t ≥ 1 let:

s(t)(v) = comb
(
s(t−1)(v),agg

({{
s(t−1)(w)

∣∣ w ∈ NG (v)
}})
, agg′

({{
s(t−1)(w)

∣∣ w ∈ V (G )
}}))

Termination and Readout
▶ Each node has flag (say, the last coordinate in s(t)(v)) indicating whether the

local computation at the node is complete.
▶ The global computation halts once every node has set its flag.
▶ At that point, the signal is aggregated and a readout functions is applied.

We do not require convergence of the signals.

21



Recurrent GNNs
So far, GNNs have a fixed number d of layers, and each layer t has its own functions
aggt , agg′t , combt .

Recurrent GNN Computation
A recurrent GNN has a single layer and applies it repeatedly. That is, we have
aggregation functions agg, agg′ and a combination function comb and for t ≥ 1 let:

s(t)(v) = comb
(
s(t−1)(v),agg

({{
s(t−1)(w)

∣∣ w ∈ NG (v)
}})
, agg′

({{
s(t−1)(w)

∣∣ w ∈ V (G )
}}))

Termination and Readout
▶ Each node has flag (say, the last coordinate in s(t)(v)) indicating whether the

local computation at the node is complete.
▶ The global computation halts once every node has set its flag.
▶ At that point, the signal is aggregated and a readout functions is applied.

We do not require convergence of the signals.

21



Recurrent GNNs
So far, GNNs have a fixed number d of layers, and each layer t has its own functions
aggt , agg′t , combt .

Recurrent GNN Computation
A recurrent GNN has a single layer and applies it repeatedly. That is, we have
aggregation functions agg, agg′ and a combination function comb and for t ≥ 1 let:

s(t)(v) = comb
(
s(t−1)(v),agg

({{
s(t−1)(w)

∣∣ w ∈ NG (v)
}})
, agg′

({{
s(t−1)(w)

∣∣ w ∈ V (G )
}}))

Termination and Readout
▶ Each node has flag (say, the last coordinate in s(t)(v)) indicating whether the

local computation at the node is complete.

▶ The global computation halts once every node has set its flag.
▶ At that point, the signal is aggregated and a readout functions is applied.

We do not require convergence of the signals.

21



Recurrent GNNs
So far, GNNs have a fixed number d of layers, and each layer t has its own functions
aggt , agg′t , combt .

Recurrent GNN Computation
A recurrent GNN has a single layer and applies it repeatedly. That is, we have
aggregation functions agg, agg′ and a combination function comb and for t ≥ 1 let:

s(t)(v) = comb
(
s(t−1)(v),agg

({{
s(t−1)(w)

∣∣ w ∈ NG (v)
}})
, agg′

({{
s(t−1)(w)

∣∣ w ∈ V (G )
}}))

Termination and Readout
▶ Each node has flag (say, the last coordinate in s(t)(v)) indicating whether the

local computation at the node is complete.
▶ The global computation halts once every node has set its flag.

▶ At that point, the signal is aggregated and a readout functions is applied.

We do not require convergence of the signals.

21



Recurrent GNNs
So far, GNNs have a fixed number d of layers, and each layer t has its own functions
aggt , agg′t , combt .

Recurrent GNN Computation
A recurrent GNN has a single layer and applies it repeatedly. That is, we have
aggregation functions agg, agg′ and a combination function comb and for t ≥ 1 let:

s(t)(v) = comb
(
s(t−1)(v),agg

({{
s(t−1)(w)

∣∣ w ∈ NG (v)
}})
, agg′

({{
s(t−1)(w)

∣∣ w ∈ V (G )
}}))

Termination and Readout
▶ Each node has flag (say, the last coordinate in s(t)(v)) indicating whether the

local computation at the node is complete.
▶ The global computation halts once every node has set its flag.
▶ At that point, the signal is aggregated and a readout functions is applied.

We do not require convergence of the signals.

21



Recurrent GNNs
So far, GNNs have a fixed number d of layers, and each layer t has its own functions
aggt , agg′t , combt .

Recurrent GNN Computation
A recurrent GNN has a single layer and applies it repeatedly. That is, we have
aggregation functions agg, agg′ and a combination function comb and for t ≥ 1 let:

s(t)(v) = comb
(
s(t−1)(v),agg

({{
s(t−1)(w)

∣∣ w ∈ NG (v)
}})
, agg′

({{
s(t−1)(w)

∣∣ w ∈ V (G )
}}))

Termination and Readout
▶ Each node has flag (say, the last coordinate in s(t)(v)) indicating whether the

local computation at the node is complete.
▶ The global computation halts once every node has set its flag.
▶ At that point, the signal is aggregated and a readout functions is applied.

We do not require convergence of the signals.
21



Universality of Recurrent GNNs

Theorem (Rosenbluth and G. 2025+)
Let F : G→ Qn be computable. Then the following are
equivalent.

(i) F is C2-invariant.

(ii) F is computable by a recurrent GNN.
Eran Rosenbluth

Furthermore,
▶ we may choose the GNN in (ii) to have rational weights and to only use SUM

aggregation;
▶ if F is computable in polynomial time then the GNN stops after polynomially

many iterations and only uses internal states of polynomial bitlength.

22



Universality of Recurrent GNNs

Theorem (Rosenbluth and G. 2025+)
Let F : G→ Qn be computable. Then the following are
equivalent.

(i) F is C2-invariant.

(ii) F is computable by a recurrent GNN.
Eran Rosenbluth

Furthermore,
▶ we may choose the GNN in (ii) to have rational weights and to only use SUM

aggregation;
▶ if F is computable in polynomial time then the GNN stops after polynomially

many iterations and only uses internal states of polynomial bitlength.

22



Variants

Corollary
Every computable function F : G→ Qn is computable by a recurrent GNN with
random initialisation only using rational weight and SUM aggregation.

Furthermore, if F is computable in polynomial time then the GNN runs in polynomial
time and only uses internal states of polynomial bitlength.

Remarks
▶ Global aggregation simplifies the theorem and its proof. We also have a version

without global aggregation, but it requires to pass the size of the graph as part
of the initial signal, and it only applies to connected graphs.

▶ There are also a versions of the results for node-level functions (actually, we
prove these first and derive the graph-level results as a consequence).

23



Variants

Corollary
Every computable function F : G→ Qn is computable by a recurrent GNN with
random initialisation only using rational weight and SUM aggregation.

Furthermore, if F is computable in polynomial time then the GNN runs in polynomial
time and only uses internal states of polynomial bitlength.

Remarks
▶ Global aggregation simplifies the theorem and its proof. We also have a version

without global aggregation, but it requires to pass the size of the graph as part
of the initial signal, and it only applies to connected graphs.

▶ There are also a versions of the results for node-level functions (actually, we
prove these first and derive the graph-level results as a consequence).

23



Variants

Corollary
Every computable function F : G→ Qn is computable by a recurrent GNN with
random initialisation only using rational weight and SUM aggregation.

Furthermore, if F is computable in polynomial time then the GNN runs in polynomial
time and only uses internal states of polynomial bitlength.

Remarks
▶ Global aggregation simplifies the theorem and its proof. We also have a version

without global aggregation, but it requires to pass the size of the graph as part
of the initial signal, and it only applies to connected graphs.

▶ There are also a versions of the results for node-level functions (actually, we
prove these first and derive the graph-level results as a consequence).

23



Variants

Corollary
Every computable function F : G→ Qn is computable by a recurrent GNN with
random initialisation only using rational weight and SUM aggregation.

Furthermore, if F is computable in polynomial time then the GNN runs in polynomial
time and only uses internal states of polynomial bitlength.

Remarks
▶ Global aggregation simplifies the theorem and its proof. We also have a version

without global aggregation, but it requires to pass the size of the graph as part
of the initial signal, and it only applies to connected graphs.

▶ There are also a versions of the results for node-level functions (actually, we
prove these first and derive the graph-level results as a consequence).

23



Proof of the Theorem (Outline)
We want to compute F(G ) for some graph G by a recurrent GNN.

Phase 1: Computing the Colours
We simulate colour refinement. After Phase 1, the signal at every node v holds a
representation Dv of v ’s its colour.

Phase 2: Inversion
Locally at every node v , from the colour Dv we compute a graph Gv that is
C2-equivalent to the input graph G .

Phase 3: Computation of F
Locally at every node v , we compute F(Gv ). Since F is C2-invariant, we have
F(Gv ) = F(G ).

Thus after Phase 3, every node holds the correct function value, and readout
becomes trivial.

24



Proof of the Theorem (Outline)
We want to compute F(G ) for some graph G by a recurrent GNN.

Phase 1: Computing the Colours
We simulate colour refinement. After Phase 1, the signal at every node v holds a
representation Dv of v ’s its colour.

Phase 2: Inversion
Locally at every node v , from the colour Dv we compute a graph Gv that is
C2-equivalent to the input graph G .

Phase 3: Computation of F
Locally at every node v , we compute F(Gv ). Since F is C2-invariant, we have
F(Gv ) = F(G ).

Thus after Phase 3, every node holds the correct function value, and readout
becomes trivial.

24



Proof of the Theorem (Outline)
We want to compute F(G ) for some graph G by a recurrent GNN.

Phase 1: Computing the Colours
We simulate colour refinement. After Phase 1, the signal at every node v holds a
representation Dv of v ’s its colour.

Phase 2: Inversion
Locally at every node v , from the colour Dv we compute a graph Gv that is
C2-equivalent to the input graph G .

Phase 3: Computation of F
Locally at every node v , we compute F(Gv ). Since F is C2-invariant, we have
F(Gv ) = F(G ).

Thus after Phase 3, every node holds the correct function value, and readout
becomes trivial.

24



Proof of the Theorem (Outline)
We want to compute F(G ) for some graph G by a recurrent GNN.

Phase 1: Computing the Colours
We simulate colour refinement. After Phase 1, the signal at every node v holds a
representation Dv of v ’s its colour.

Phase 2: Inversion
Locally at every node v , from the colour Dv we compute a graph Gv that is
C2-equivalent to the input graph G .

Phase 3: Computation of F
Locally at every node v , we compute F(Gv ). Since F is C2-invariant, we have
F(Gv ) = F(G ).

Thus after Phase 3, every node holds the correct function value, and readout
becomes trivial.

24



Proof of the Theorem (Outline)
We want to compute F(G ) for some graph G by a recurrent GNN.

Phase 1: Computing the Colours
We simulate colour refinement. After Phase 1, the signal at every node v holds a
representation Dv of v ’s its colour.

Phase 2: Inversion
Locally at every node v , from the colour Dv we compute a graph Gv that is
C2-equivalent to the input graph G .

Phase 3: Computation of F
Locally at every node v , we compute F(Gv ). Since F is C2-invariant, we have
F(Gv ) = F(G ).

Thus after Phase 3, every node holds the correct function value, and readout
becomes trivial.

24



Phase 3: Computation of F

Locally at every node v , we need to compute F(Gv ) from the graph Gv that is
encoded in ths state of node v after Phase 2.

Local computation of a GNN at a node that ignores the message passing is
essentially the computation of a recurrent feedforward neural network.

Thus we can use the following result

Theorem (Siegelmann and Sontag 1992)
Every computable function f : Qm → Qn is computable by a recurrent feedforward
neural network.

25



Phase 3: Computation of F

Locally at every node v , we need to compute F(Gv ) from the graph Gv that is
encoded in ths state of node v after Phase 2.

Local computation of a GNN at a node that ignores the message passing is
essentially the computation of a recurrent feedforward neural network.

Thus we can use the following result

Theorem (Siegelmann and Sontag 1992)
Every computable function f : Qm → Qn is computable by a recurrent feedforward
neural network.

25



Phase 3: Computation of F

Locally at every node v , we need to compute F(Gv ) from the graph Gv that is
encoded in ths state of node v after Phase 2.

Local computation of a GNN at a node that ignores the message passing is
essentially the computation of a recurrent feedforward neural network.

Thus we can use the following result

Theorem (Siegelmann and Sontag 1992)
Every computable function f : Qm → Qn is computable by a recurrent feedforward
neural network.

25



Phase 1: Computing the Colours

What are the “colours”?

Graph G
coloured

Tree representation

0 2

0 2

0

1

1

0

2 0

3

0 1

0

30

1

0
2

1

0

3
0 2

0

1

Compact dag representation

To simulate colour refinement by a recurrent GNN, we encode the compact dag
representation of colours by rational numbers and in several rounds by decreasing c
for each node v count the number of neighbours of v of colour c .

26



Phase 1: Computing the Colours

What are the “colours”?

Graph G

Graph G
coloured

Tree representation

0 2

0 2

0

1

1

0

2 0

3

0 1

0

30

1

0
2

1

0

3
0 2

0

1

Compact dag representation

To simulate colour refinement by a recurrent GNN, we encode the compact dag
representation of colours by rational numbers and in several rounds by decreasing c
for each node v count the number of neighbours of v of colour c .

26



Phase 1: Computing the Colours

What are the “colours”?

Graph G
coloured

Tree representation

0 2

0 2

0

1

1

0

2 0

3

0 1

0

30

1

0
2

1

0

3
0 2

0

1

Compact dag representation

To simulate colour refinement by a recurrent GNN, we encode the compact dag
representation of colours by rational numbers and in several rounds by decreasing c
for each node v count the number of neighbours of v of colour c .

26



Phase 1: Computing the Colours

What are the “colours”?

Graph G
coloured

Tree representation

0 2

0 2

0

1

1

0

2 0

3

0 1

0

30

1

0
2

1

0

3
0 2

0

1

Compact dag representation

To simulate colour refinement by a recurrent GNN, we encode the compact dag
representation of colours by rational numbers and in several rounds by decreasing c
for each node v count the number of neighbours of v of colour c .

26



Phase 1: Computing the Colours

What are the “colours”?

Graph G
coloured

Tree representation

0 2

0 2

0

1

1

0

2 0

3

0 1

0

30

1

0
2

1

0

3
0 2

0

1

Compact dag representation

To simulate colour refinement by a recurrent GNN, we encode the compact dag
representation of colours by rational numbers and in several rounds by decreasing c
for each node v count the number of neighbours of v of colour c .

26



Phase 1: Computing the Colours

What are the “colours”?

Graph G
coloured

Tree representation

0 2

0 2

0

1

1

0

2 0

3

0 1

0

30

1

0
2

1

0

3
0 2

0

1

Compact dag representation

To simulate colour refinement by a recurrent GNN, we encode the compact dag
representation of colours by rational numbers and in several rounds by decreasing c
for each node v count the number of neighbours of v of colour c .

26



Phase 2: Inversion

The following lemma is an easy adaptation of a result on “inverting C2-invariants”
due to Martin Otto.

Lemma (Otto 1997)
There is a polynomial time algorithm that, given the dag representation Dv of the
colour of a node v in a graph G, computes a graph Gv that is C2-equivalent to G.

27



Phase 2: Inversion

The following lemma is an easy adaptation of a result on “inverting C2-invariants”
due to Martin Otto.

Lemma (Otto 1997)
There is a polynomial time algorithm that, given the dag representation Dv of the
colour of a node v in a graph G, computes a graph Gv that is C2-equivalent to G.

27



Concluding Remarks

28



Concluding Remarks

▶ Our results on recurrent GNNs necessarily require rationals of unbounded
precision in the (internal) signals computed by the GNN, even if we are only
interested in computing a Boolean function.

It would be interesting, to understand the precise bitlength required. For
example, which functions can we compute with logarithmic bitlength (in the size
of the input graph)?

▶ Is there a version of our main result on recurrent GNNs for higher-order
recurrent GNNs and functions invariant under the corresponding higher-order
Weisfeiler-Leman algorithm?

▶ We have a good understanding of the expressiveness of GNNs. But
expressiveness results only tell half the story, because they ignore learning.
However, many of the results presented here have good experimental support.

If you are looking for a postdoc position, please contact me.

29



Concluding Remarks

▶ Our results on recurrent GNNs necessarily require rationals of unbounded
precision in the (internal) signals computed by the GNN, even if we are only
interested in computing a Boolean function.

It would be interesting, to understand the precise bitlength required. For
example, which functions can we compute with logarithmic bitlength (in the size
of the input graph)?

▶ Is there a version of our main result on recurrent GNNs for higher-order
recurrent GNNs and functions invariant under the corresponding higher-order
Weisfeiler-Leman algorithm?

▶ We have a good understanding of the expressiveness of GNNs. But
expressiveness results only tell half the story, because they ignore learning.
However, many of the results presented here have good experimental support.

If you are looking for a postdoc position, please contact me.

29



Concluding Remarks

▶ Our results on recurrent GNNs necessarily require rationals of unbounded
precision in the (internal) signals computed by the GNN, even if we are only
interested in computing a Boolean function.

It would be interesting, to understand the precise bitlength required. For
example, which functions can we compute with logarithmic bitlength (in the size
of the input graph)?

▶ Is there a version of our main result on recurrent GNNs for higher-order
recurrent GNNs and functions invariant under the corresponding higher-order
Weisfeiler-Leman algorithm?

▶ We have a good understanding of the expressiveness of GNNs. But
expressiveness results only tell half the story, because they ignore learning.
However, many of the results presented here have good experimental support.

If you are looking for a postdoc position, please contact me.

29



Concluding Remarks

▶ Our results on recurrent GNNs necessarily require rationals of unbounded
precision in the (internal) signals computed by the GNN, even if we are only
interested in computing a Boolean function.

It would be interesting, to understand the precise bitlength required. For
example, which functions can we compute with logarithmic bitlength (in the size
of the input graph)?

▶ Is there a version of our main result on recurrent GNNs for higher-order
recurrent GNNs and functions invariant under the corresponding higher-order
Weisfeiler-Leman algorithm?

▶ We have a good understanding of the expressiveness of GNNs. But
expressiveness results only tell half the story, because they ignore learning.
However, many of the results presented here have good experimental support.

If you are looking for a postdoc position, please contact me.

29



Concluding Remarks

▶ Our results on recurrent GNNs necessarily require rationals of unbounded
precision in the (internal) signals computed by the GNN, even if we are only
interested in computing a Boolean function.

It would be interesting, to understand the precise bitlength required. For
example, which functions can we compute with logarithmic bitlength (in the size
of the input graph)?

▶ Is there a version of our main result on recurrent GNNs for higher-order
recurrent GNNs and functions invariant under the corresponding higher-order
Weisfeiler-Leman algorithm?

▶ We have a good understanding of the expressiveness of GNNs. But
expressiveness results only tell half the story, because they ignore learning.
However, many of the results presented here have good experimental support.

If you are looking for a postdoc position, please contact me.
29



A Few References

Grohe, M. (2021). The Logic of Graph Neural Networks.
In: Proc. LICS 2021.
arXiv:2104.14624

Grohe, M. (2024). The Descriptive Complexity of Graph Neural Networks.
In: TheoretiCS 3(25), 2024.
arXiv:2303.04613

Rosenbluth, E. and Grohe, M. (2025) Repetition Makes Perfect: Recurrent
Sum-GNNs Match Message Passing Limit.
arXiv:2505.00291

30

https://arxiv.org/abs/2104.14624
https://arxiv.org/abs/2303.04613
https://arxiv.org/abs/2505.00291

	Graph Neural Networks
	The Logic of GNNs
	Recurrent GNNs
	Concluding Remarks

