Games and Symmetric Circuits

Anuj Dawar

Department of Computer Science and Technology, University of Cambridge

FAMT, Les Houches, 27 May 2025

Finite Model Theory: Early Promise

The field of *descriptive complexity* started with the hope that we would:

- characterize complexity classes by means of logic
- use logical methods to prove *lower bounds*
- methods largely based on versions of *Ehrenfeucht-Fraissé* games

Fagin:

- \exists SO captures NP; and so \forall SO captures coNP.
- Use games to separate $\exists MSO$ and $\forall MSO$

Immerman:

- FP captures P and TC captures NL on ordered structures.
- Use games to separate FP from TC on *unordered* structures.

Game Arguments

Development of techniques using *games* gave us increasingly sophisticated arguments.

Two examples:

```
separation of ∃MSO and ∀MSO on ordered graphs
```

(Schwentick 1994) separation of ∃MSO and ∀MSO on graphs with built-in relations that exclude a minor. (Kreidler, Seese 1998) a precursor to later work on tame classes of finite structures.

separation of FPC from P (Cai, Fürer, Immerman 1992) highly influential construction, much used in combination with bijection games of (Hella 1996).

Games and Circuits

Sometimes we can obtain *inexpressibility* results in logic from *lower bounds* in complexity.

FO does not collapse to its k-variable fragment for any fixed k. (Rossman 2008)

At the same time, we can see game-based techniques from finite model theory as giving us *lower bounds* on *restricted models of computation*. particularly, *symmetric models*.

FPC defines exactly the properties decidable by *P-uniform* families of *symmetric circuits*.

(Anderson, D. 2017)

Boolean Functions

Any language $L \subseteq \{0,1\}^*$ can be seen as a family of *Boolean functions*

 $L_n: \{0,1\}^n \to \{0,1\}.$

For a group $\Gamma \leq {\rm Sym}_n$, we say that L_n is Γ -invariant if for all $\pi \in \Gamma$: $L_n(\pi {\bf x}) = L_n(x)$

where $\pi \mathbf{x}$ is the string $x_{\pi(1)} \cdots x_{\pi(n)}$.

Invariant Functions

A function $f : \{0,1\}^n \to \{0,1\}$ is *fully symmetric* if it is Sym_n -invariant. This means that $f(\mathbf{x})$ is completely determined by the number of 0s and 1s in \mathbf{x} .

Say that a function $f: \{0, 1\}^{n \times n} \to \{0, 1\}$ is square symmetric if it is Sym_n -invariant. Here, Sym_n is seen as a subgroup of $Sym_{n \times n}$. $\pi \in Sym_n$ acts on strings $\mathbf{x} \in \{0, 1\}^{n \times n}$ by

 $\pi(\mathbf{x}_{ij}) = \mathbf{x}_{\pi(i)\pi(j)}.$

The square symmetric functions include, *for example*, any function deciding a property of graphs, given the *adjacency matrix*.

Matrix Symmetric Functions

Say that a function $f : \{0, 1\}^{m \times n} \to \{0, 1\}$ is matrix symmetric if it is $(Sym_m \times Sym_n)$ -invariant. Here, $Sym_m \times Sym_n$ is seen as a subgroup of $Sym_{m \times n}$. $(\pi, \sigma) \in Sym_m \times Sym_n$ acts on strings $\mathbf{x} \in \{0, 1\}^{m \times n}$ by

 $(\pi,\sigma)(\mathbf{x}_{ij}) = \mathbf{x}_{\pi(i)\sigma(j)}.$

The matrix symmetric functions are those properties of an $m \times n$ matrix that are invariant under *independent* permutations of the rows and columns.

Circuits

Each L_n may be computed by a *circuit* C_n made up of

- Gates labeled by Boolean operators: ∧, ∨, ¬,
- Boolean inputs: x_1, \ldots, x_n , and
- A distinguished gate determining the output.

X \land, \lor, \neg, Maj

We always assume that the Boolean functions labelling individual gates are *fully symmetric*.

Symmetric Circuits

For a group $\Gamma \leq \text{Sym}_n$, a circuit C_n is Γ -symmetric if every permutation $\pi \in \Gamma$ acting on the *inputs* of C_n extends to an *automorphism* of C_n .

FPC

A graph property is in *fixed-point logic with counting* (FPC) *if, and only if,* it is decided by a P-uniform family of *square symmetric* circuits using *AND, OR, NOT* and *MAJ* gates.

Excluding *MAJ* gates gives us something *strictly weaker*.

A graph property is in FPC *if, and only if,* it is decided by a P-uniform family of *square symmetric* circuits using *fully symmetric gates*.

Similar characterizations work with other structured inputs: *matrices*; *Boolean formulas*; *systems of equations*.

FPC gives a natural notion of *polynomial-time, symmetric* computation. This means *bijection games* give us a method for proving *circuit lower bounds*.

Counting Quantifiers

 C^k is the logic obtained from *first-order logic* by allowing:

- counting quantifiers: $\exists^i x \varphi$; and
- only the variables x_1, \ldots, x_k .

Every formula of C^k is equivalent to a formula of first-order logic, albeit one with more variables.

For every sentence φ of FPC, there is a k such that if $\mathbb{A} \equiv^{C^k} \mathbb{B}$, then

 $\mathbb{A} \models \varphi$ if, and only if, $\mathbb{B} \models \varphi$.

Bijection Games

\equiv^{C^k} is characterized by a *k*-pebble *bijection game*. (Hella 96).

The game is played on structures A and B with pebbles a_1, \ldots, a_k on A and b_1, \ldots, b_k on B.

- *Spoiler* chooses a pair of pebbles a_i and b_i ;
- Duplicator chooses a bijection h : A → B such that for pebbles a_j and b_j(j ≠ i), h(a_j) = b_j;
- *Spoiler* chooses $a \in A$ and places a_i on a and b_i on h(a).

Duplicator loses if the partial map $a_i \mapsto b_i$ is not a partial isomorphism. *Duplicator* has a strategy to play forever if, and only if, $\mathbb{A} \equiv^{C^k} \mathbb{B}$.

Bijection Games and Symmetric Circuits

The aim now is to use the *bijection game* as a method for proving lower bounds on the size of *symmetric circuits*.

The key parameter of a circuit that links to the *number of pebbles* in the game is the *support size*.

Every gate in a Sym_n or Alt_n symmetric circuit of polynomial size has a stabilizer group with small support.

Stabilizers

For a gate g in a Γ -symmetric circuit C_n , $\operatorname{Stab}(g)$ denotes the *stabilizer* group of g, i.e. the *subgroup* of Γ :

$$\operatorname{Stab}(g) = \{ \pi \in \operatorname{Sym}_n \mid \pi(g) = g \}.$$

The *orbit* of g is the set of gates $\{h \mid \pi(g) = h \text{ for some } \pi \in \Gamma\}$

By the *orbit-stabilizer* theorem, there is one gate in the orbit of g for each *co-set* of $\operatorname{Stab}(g)$ in Γ . Thus the size of the *orbit* of g in C_n is $[\Gamma : \operatorname{Stab}(g)] = \frac{|\Gamma|}{|\operatorname{Stab}(g)|}$. So, an upper bound on $\operatorname{Stab}(g)$ gives us a lower bound on the orbit of g.

Supports

For a group $\Delta \subseteq \Gamma$, we say that a set $X \subseteq [n]$ is a *support* of Δ if For every $\pi \in \Gamma$, if $\pi(x) = x$ for all $x \in X$, then $\pi \in G$.

In other words, Δ contains all permutations of Γ that pointwise fix X.

So, in the case when $\Gamma = \operatorname{Sym}_n$, if |X| = k, $[\Gamma : \Delta]$ is at most $\frac{n!}{(n-k)!} \leq n^k$.

Groups with small support are *big*.

The converse is clearly false since $[Sym_n : Alt_n] = 2$, but Alt_n has no support of size less than n - 1.

$\Gamma\text{-restricted}$ Bijection Game

We are given structures \mathbb{A}, \mathbb{B} and a group $\Gamma \leq \mathsf{Sym}_B$.

Spoiler chooses an initial bijection $h: A \rightarrow B$ and then at each move

- *Spoiler* chooses a pair of pebbles a_i and b_i ;
- Duplicator chooses a permutation $\pi \in \Gamma$ such that for pebbles a_j and $b_j (j \neq i), \pi \circ h(a_j) = b_j$;
- *Spoiler* chooses $a \in A$ and places a_i on a and b_i on $\pi \circ h(a)$.

The winning conditions are the same as before.

Note that this is the standard bijection game when $\Gamma = \text{Sym}_B$.

Circuits and Pebble Games

If *C* is a Γ -symmetric circuit on *n*-element structures such that every gate of *C* has a support of size at most *k*, and \mathbb{A} and \mathbb{B} are inputs such that Duplicator wins the 2k-pebble Γ -bijection game on \mathbb{A} and \mathbb{B} :

C accepts \mathbb{A} if, and only if, C accepts \mathbb{B} .

This can be proved by showing that if C distinguishes A from B, then it provides a *winning strategy* for *Spoiler* in the 2k-pebble bijection game.

Proof Sketch

Show that if

- C accepts A when it is mapped to the inputs by bijection $\alpha: A \to [n]$; and
- C rejects \mathbb{B} when it is mapped to the inputs by bijection $\beta: B \to [n]$.

then, *Spoiler* has a winning strategy in the 2k-pebble bijection game played on A and B.

Show by induction that, while playing the *bijection game Spoiler* can maintain a pointer to a gate g of C and the following invariants for the game position $(\overline{u}, \overline{v})$:

- $\alpha(\overline{u})$ includes the support of g.
- For any bijection $\pi \in \Gamma$ such that $\alpha(\overline{u}) = \beta \pi(\overline{v})$:

 $C_g(\alpha(\mathbb{A})) \neq C_g(\beta \pi(\mathbb{B})).$

Proof Sketch – 2

Base Case:

Initially, *Spoiler* plays $\beta^{-1}\alpha$. By assumption, for g the *output gate* $C_g(\alpha(\mathbb{A})) = 1$ and $C_g(\beta(\mathbb{B})) = 0$ and so $C_g(\pi\beta(\mathbb{B})) = 0$ by Γ -invariance.

Induction Step:

While keeping pebbles on the support of g, *Spoiler* moves the other k pebbles to the support of a *child* h of g. At each move, *Duplicator* plays a bijection $\pi : B \to B$ such that $\alpha(\overline{u}) = \beta \pi(\overline{v})$. Thus, $C_g(\alpha(\mathbb{A})) \neq C_g(\beta \pi(\mathbb{B}))$, and there is an h for which

 $C_h(\alpha(\mathbb{A})) \neq C_h(\beta \pi(\mathbb{B}))$

Alternating Supports

Groups with small support are *big*.

The converse is clearly false since $[Sym_n : Alt_n] = 2$, but Alt_n has no support of size less than n - 1.

In a sense, the alternating group is the *only* exception, due to a standard result from permutation group theory.

Theorem If n > 8, $1 \le k \le n/4$, and G is a subgroup of Sym_n with $[Sym_n:G] < \binom{n}{k}$, then there is a set $X \subseteq [n]$ with |X| < k such that $Alt_{(X)} \le G$. where $Alt_{(X)}$ denotes group $\{\pi \in Alt_n : \pi(i) = i \text{ for all } i \in X\}$

Support Theorems

If $(C_n)_{n \in \omega}$ is a family of *symmetric* circuits of size n^k , then for all sufficiently large n and gates g in C_n , there is a set $X \subseteq [n]$ with $|X| \leq k$ such that $Alt_{(X)} \leq Stab(g)$.

In polynomial-size Alt_n-symmetric circuits, all gates have small support.

The same can be shown for Sym_n -symmetric circuits by an *induction* on the structure of the circuit, showing that the alternating group does not appear as the stabilizer of any gate

We can also establish *support theorems* for *matrix symmetric* circuits with symmetry groups of the form $\text{Sym}_m \times \text{Sym}_n$ and $\text{Alt}_m \times \text{Alt}_n$.

Algebraic Circuits

Algebraic Circuits

Algebraic Circuits over a field *K* are given by:

- A directed acyclic graph.
- Inputs labelled by a *variable* $x \in X$, or constant $c \in K$.
- Internal gates labelled by + or \times .
- A designated *output*.

Each circuit computes (or represents) a *polynomial* in K[X].

Valiant's conjecture $VP \neq VNP$ is the *algebraic analogue* of $P \neq NP$.

Matrix Inputs

We are often interested in inputs which are entries of *a matrix*.

 $X = \{x_{ij} \mid 1 \le i \le m; 1 \le j \le n\}$

Especially, when the input is a square matrix, so m = n.

$$\operatorname{tr}(X) = \sum_{i} x_{ii}$$

$$\mathrm{Det}(X) = \sum_{\sigma \in \mathrm{Sym}_n} \mathrm{sgn}(\sigma) \prod_{i \in [n]} x_{i\sigma(i)}$$

$$\operatorname{Per}(X) = \sum_{\sigma \in \operatorname{Sym}_n} \prod_{i \in [n]} x_{i\sigma(i)}$$

Valiant's Conjecture

Det(X) is in VP—it can be expressed by polynomial size circuits, for example by implementing a *Gaussian elimination* algorithm.

Per(X) is VNP-complete.

Valiant's conjecture is that Per(X) cannot be expressed by circuits of polynomial size.

Symmetric Algebraic Circuits

Suppose C is a circuit computing a polynomal $p \in K[X]$. Sym_X—the group of *permutations* of X.

For $\Gamma \leq \text{Sym}_X$, p is Γ -symmetric if for all $\pi \in \Gamma$, $p^{\pi} = p$.

C is Γ -symmetric if the action of Γ on the inputs *X* extends to an *automorphism* of *C*.

Symmetric Polynomials

The matrix polynomials tr(X), Det(X) and Per(X) are all *square symmetric*, i.e. invariant under the action of Sym_n given by

 $x_{ij}^{\pi} = x_{\pi(i)\pi(j)}.$

i.e., simultaneous row and column permutations.

Per(X) is also matrix symmetric, i.e. invariant under independent row and column permutations:

the action of $\mathsf{Sym}_n\times\mathsf{Sym}_n$ given by

$$x_{ij}^{(\sigma,\pi)} = x_{\sigma(i)\pi(j)}.$$

tr(X) and Det(X) are not matrix symmetric.

Determinant

The invariance group of

$$\mathrm{Det}(X) = \sum_{\sigma \in \mathsf{Sym}_n} \mathrm{sgn}(\sigma) \prod_{i \in [n]} x_{i\sigma(i)}$$

includes

$$D = \{(\sigma, \pi) \in \mathsf{Sym}_n \times \mathsf{Sym}_n \mid \mathsf{sgn}(\sigma) = \mathsf{sgn}(\pi)\} \ltimes \mathbb{Z}_2.$$

In particular, it is $Alt_n \times Alt_n$ -symmetric.

The defining expression yields a circuit with these symmetries, but of $\Omega(n!)$ size.

Results

Г	${id}$	$Sym_{[n]}$	$Alt_{[n]} \times Alt_{[n]}$	$Sym_{[n]} imes Sym_{[n]}$
Det	$O(n^{\omega})$	<i>O</i> (<i>n</i> ³) (char 0)	$2^{\Omega(n)}$ (char 0)	N/A
Perm	$O(n^2 2^n)$ VP = VNP?	$2^{\Omega(n)}$ (char 0)	$rac{2^{\Omega(n)}}{(char eq 2)}$	$rac{2^{\Omega(n)}}{(char eq 2)}$

Results from (D., Wilsenach, 2020/2022)

Determinant Lower Bound

We construct a bipartite graph G = (A, B, E) with

- |A| = |B| = O(k)
- the bi-adjacency matrix has non-zero determinant
- *Duplicator* wins the *k*-pebble, Alt_A × Alt_B bijection game on two copies of *G* starting with any bijection swapping two elements of *B*.

Alternating Game

6 May 2025

Characterizing Families of Symmetric Polynommials

Given a family $(p_{m,n})_{m,n\in\mathbb{N}}$ of polynomials where

- $p_{m,n} \in \mathbb{Q}[X]$ with $X = \{x_{ij} \mid i \in [m], j \in [n]\};$
- $p_{m,n}$ is $\text{Sym}_m \times \text{Sym}_n$ -symmetric;

when can this be computed by a family of $Sym_m \times Sym_n$ -symmetric circuits of *polynomial-size* (or *orbit size*)?

We have a fairly complete answer.

(D,Pago, Seppelt 2025)