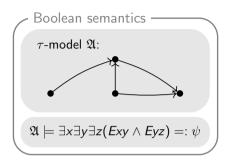
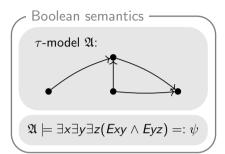
Semiring Semantics: Algebraic Properties vs. Logical Results

Sophie Brinke

Finite and Algorithmic Model Theory 2025, Les Houches



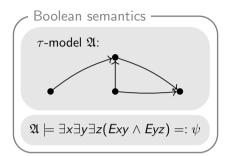


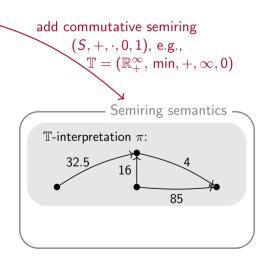
add commutative semiring $(S,+,\cdot,0,1)$ Semiring semantics

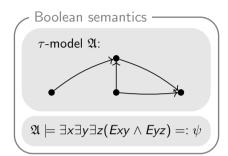
What does the evaluation cost?

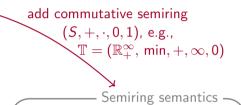
Which clearance level is required?

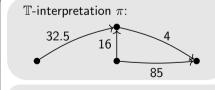
How many evaluation strategies are there?



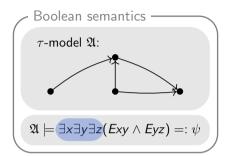


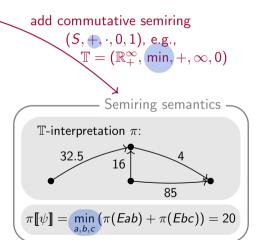


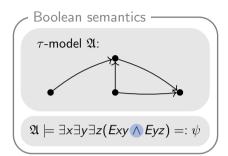


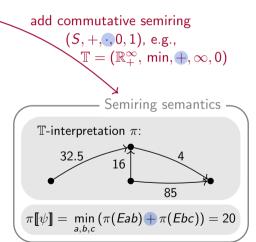


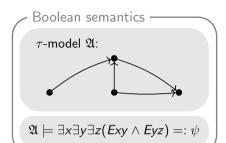
$$\pi\llbracket\psi\rrbracket = \min_{a,b,c} (\pi(Eab) + \pi(Ebc)) = 20$$







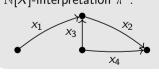




add commutative semiring $(S,+,\cdot,0,1), \text{ e.g.,} \\ \mathbb{T} = (\mathbb{R}_+^\infty, \min,+,\infty,0)$

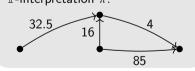
Semiring semantics -

 $\mathbb{N}[X]$ -interpretation π^* :

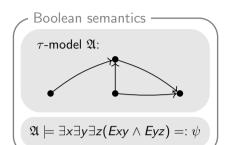


 $\pi^* \llbracket \psi \rrbracket = x_1 x_2 + x_3 x_2$

$$\mathbb{T}$$
-interpretation π :



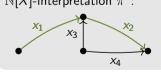
$$\pi\llbracket\psi\rrbracket = \min_{a,b,c} (\pi(Eab) + \pi(Ebc)) = 20$$



add commutative semiring $(S,+,\cdot,0,1), \text{ e.g.,} \\ \mathbb{T} = (\mathbb{R}_+^\infty, \min,+,\infty,0)$

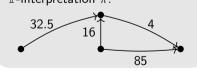
Semiring semantics -

 $\mathbb{N}[X]$ -interpretation π^* :

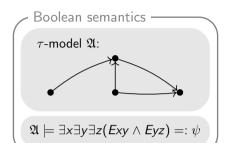


 $\pi^* \llbracket \psi \rrbracket = x_1 x_2 + x_3 x_2$

$$\mathbb{T}$$
-interpretation π :



$$\pi\llbracket\psi\rrbracket = \min_{a,b,c} (\pi(Eab) + \pi(Ebc)) = 20$$



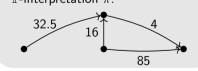
add commutative semiring $(S,+,\cdot,0,1), \text{ e.g.,} \\ \mathbb{T} = (\mathbb{R}_+^\infty, \min,+,\infty,0)$

Semiring semantics -

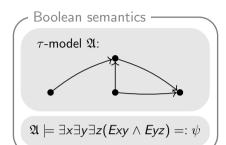
$$\mathbb{N}[X]$$
-interpretation π^* :

$$\pi^* \llbracket \psi \rrbracket = x_1 x_2 + x_3 x_2$$

\mathbb{T} -interpretation π :



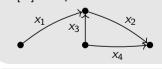
$$\pi\llbracket\psi\rrbracket = \min_{a,b,c} (\pi(\mathsf{E}\mathsf{a}\mathsf{b}) + \pi(\mathsf{E}\mathsf{b}\mathsf{c})) = 20$$



add commutative semiring $(S,+,\cdot,0,1), \text{ e.g.,} \\ \mathbb{T} = (\mathbb{R}_+^\infty, \min,+,\infty,0)$

Semiring semantics -

 $\mathbb{N}[X]$ -interpretation π^* :



 $\pi^* \llbracket \psi \rrbracket = x_1 x_2 + x_3 x_2$

Fundamental Property

I

T-interpretation π :

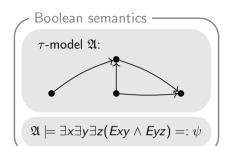
32.5

16

4

85

 $\pi\llbracket\psi\rrbracket = \min_{a,b,c} (\pi(Eab) + \pi(Ebc)) = 20$

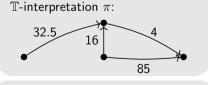


add commutative semiring $(S,+,\cdot,0,1), \text{ e.g.,} \\ \mathbb{T} = (\mathbb{R}_+^\infty, \min,+,\infty,0)$

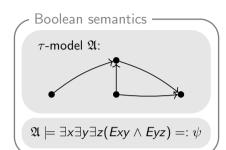
Semiring semantics -

 $\mathbb{N}[X]$ -interpretation π^* : $x_1 \qquad x_2 \qquad x_4$ $\pi^* \llbracket \psi \rrbracket = x_1 x_2 + x_3 x_2$

 $\frac{h}{\text{Fundamental}}$ Property



$$\pi\llbracket\psi\rrbracket = \min_{a,b,c} (\pi(\mathsf{E}ab) + \pi(\mathsf{E}bc)) = 20$$

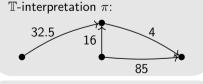


add commutative semiring $(S,+,\cdot,0,1), \text{ e.g.,} \\ \mathbb{T} = (\mathbb{R}_+^\infty, \min,+,\infty,0)$

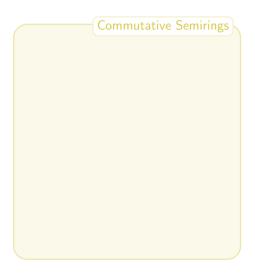
Semiring semantics -

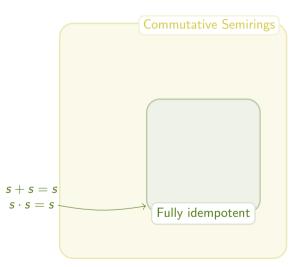
$$\mathbb{N}[X]$$
-interpretation π^* :
$$x_1 \qquad x_2 \qquad x_4$$

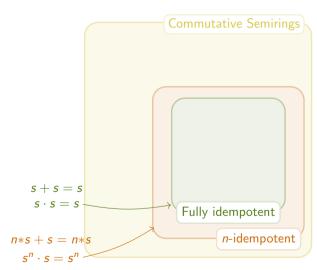
$$\pi^* \llbracket \psi \rrbracket = x_1 x_2 + x_3 x_2$$

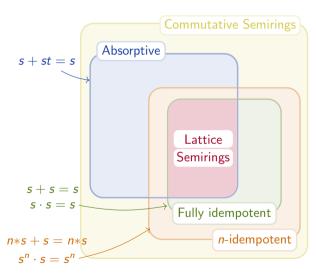


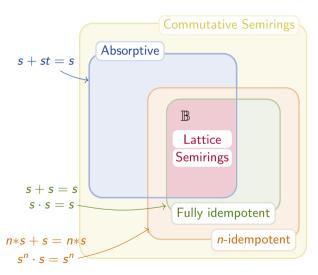
$$\pi\llbracket\psi\rrbracket = \min_{a,b,c} (\pi(\textit{Eab}) + \pi(\textit{Ebc})) = 20$$





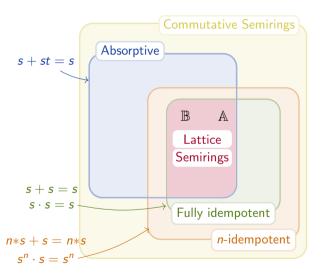






Classical semantics:

$$\mathbb{B}=(\{0,1\},\vee,\wedge,0,1)$$

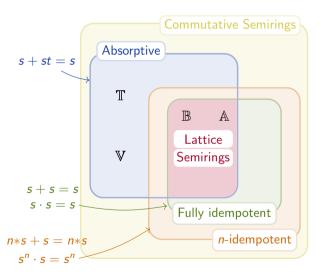


Classical semantics:

$$\mathbb{B} = (\{0,1\}, \vee, \wedge, 0, 1)$$

Access restrictions:

$$\mathbb{A} = (S, \max, \min, s, t)$$



Classical semantics:

$$\mathbb{B} = (\{0,1\}, \vee, \wedge, 0, 1)$$

Access restrictions:

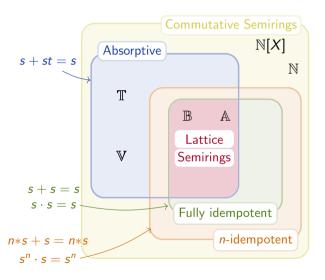
$$\mathbb{A} = (S, \max, \min, s, t)$$

Cost analysis:

$$\mathbb{T} = (\mathbb{R}_+^\infty, \mathsf{min}, +, \infty, 0)$$

Confidence:

$$\mathbb{V} = ([0,1],\mathsf{max},\cdot,0,1)$$



Classical semantics:

$$\mathbb{B} = (\{0,1\}, \vee, \wedge, 0, 1)$$

Access restrictions:

$$\mathbb{A} = (S, \max, \min, s, t)$$

Cost analysis:

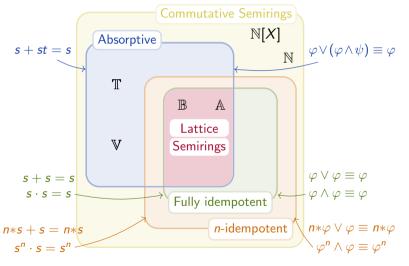
$$\mathbb{T} = (\mathbb{R}_+^\infty, \mathsf{min}, +, \infty, 0)$$

Confidence:

$$\mathbb{V} = ([0,1],\mathsf{max},\cdot,0,1)$$

Evaluation strategies:

$$\mathbb{N}, \mathbb{N}[X]$$



Classical semantics:

$$\mathbb{B}=(\{0,1\},\vee,\wedge,0,1)$$

Access restrictions:

$$\mathbb{A} = (S, \max, \min, s, t)$$

Cost analysis:

$$\mathbb{T} = (\mathbb{R}_+^\infty, \mathsf{min}, +, \infty, 0)$$

Confidence:

$$\mathbb{V} = ([0,1],\mathsf{max},\cdot,0,1)$$

Evaluation strategies:

$$\mathbb{N}, \mathbb{N}[X]$$

Axiomatisability

 $\mathfrak{A} \equiv \mathfrak{B} \Leftrightarrow \mathfrak{A} \cong \mathfrak{B}$ for finite $\mathfrak{A}, \mathfrak{B}$

EF Games

D wins $G_m(\mathfrak{A}, \mathfrak{B})$ $\Leftrightarrow \mathfrak{A} \equiv_m \mathfrak{B}$ Hanf Locality

Hanf equivalence implies elementary equivalence.

Gaifman Locality

Every $\varphi \in \mathsf{FO}$ has a Gaifman normal form.

Compactness

 $\Phi \models \psi \Leftrightarrow \Phi_0 \models \psi$ for some finite $\Phi_0 \subseteq \Phi$

0–1 Laws

 $\mbox{Every } \varphi \in \mbox{FO almost} \\ \mbox{surely evaluates to 0 or 1}.$

Axiomatisability

 $\mathfrak{A} \equiv \mathfrak{B} \Leftrightarrow \mathfrak{A} \cong \mathfrak{B}$ for finite $\mathfrak{A}, \mathfrak{B}$

EF Games

D wins $G_m(\mathfrak{A}, \mathfrak{B})$ $\Leftrightarrow \mathfrak{A} \equiv_m \mathfrak{B}$

Hanf Locality

Hanf equivalence implies elementary equivalence.

Gaifman Locality

Every $\varphi \in \mathsf{FO}$ has a Gaifman normal form.

Compactness

 $\Phi \models \psi \Leftrightarrow \Phi_0 \models \psi$ for some finite $\Phi_0 \subseteq \Phi$

0–1 Laws

 $\mbox{Every } \varphi \in \mbox{FO almost} \\ \mbox{surely evaluates to 0 or 1}.$

Axiomatisability $\pi_A \equiv \pi_B \Leftrightarrow \pi_A \cong \pi_B$ for finite π_A, π_B

EF Games —

D wins $G_m(\pi_A, \pi_B)$ $\Leftrightarrow \pi_A \equiv_m \pi_B$ Hanf Locality

Hanf equivalence implies elementary equivalence.

Gaifman Locality

Every $\varphi \in \mathsf{FO}$ has a Gaifman normal form.

Compactness

 $\Phi \models \psi \Leftrightarrow \Phi_0 \models \psi$ for some finite $\Phi_0 \subseteq \Phi$

0–1 Laws

Every $\varphi \in FO$ almost surely evaluates to $s \in S$.

Axiomatisability

 $\pi_A \equiv \pi_B \Leftrightarrow \pi_A \cong \pi_B$ for finite π_A, π_B

EF Games

D wins $G_m(\pi_A, \pi_B)$ $\Leftrightarrow \pi_A \equiv_m \pi_B$ Hanf Locality

Hanf equivalence implies elementary equivalence.

Gaifman Locality

Every $\varphi \in FO$ has a Gaifman normal form.

Compactness

 $\Phi \models \psi \Leftrightarrow \Phi_0 \models \psi$ for some finite $\Phi_0 \subseteq \Phi$

0-1 Laws

Every $\varphi \in \mathsf{FO}$ almost surely evaluates to $s \in \mathcal{S}$.

1 How can classical model-theoretic notions be generalised?

Axiomatisability

 $\pi_A \equiv \pi_B \Leftrightarrow \pi_A \cong \pi_B$ for finite π_A, π_B

EF Games

D wins $G_m(\pi_A, \pi_B)$ $\Leftrightarrow \pi_A \equiv_m \pi_B$ Hanf Locality

Hanf equivalence implies elementary equivalence.

Gaifman Locality

Every $\varphi \in \mathsf{FO}$ has a Gaifman normal form.

Compactness

 $\Phi \models \psi \Leftrightarrow \Phi_0 \models \psi$ for some finite $\Phi_0 \subseteq \Phi$

0–1 Laws

Every $\varphi \in \mathsf{FO}$ almost surely evaluates to $s \in \mathcal{S}$.

1 How can classical model-theoretic notions be generalised?

② In which semirings do the classical results survive? Which algebraic properties are responsible for this?

Axiomatisability

 $\pi_A \equiv \pi_B \Leftrightarrow \pi_A \cong \pi_B$ for finite π_A, π_B

EF Games

D wins $G_m(\pi_A, \pi_B)$ $\Leftrightarrow \pi_A \equiv_m \pi_B$ Hanf Locality

Hanf equivalence implies elementary equivalence.

Gaifman Locality

Every $\varphi \in \mathsf{FO}$ has a Gaifman normal form.

Compactness

 $\Phi \models \psi \Leftrightarrow \Phi_0 \models \psi$ for some finite $\Phi_0 \subseteq \Phi$

0–1 Laws

Every $\varphi \in \mathsf{FO}$ almost surely evaluates to $s \in \mathcal{S}$.

1 How can classical model-theoretic notions be generalised?

② In which semirings do the classical results survive? Which algebraic properties are responsible for this?

π_A :	Α	P	Q	$\neg P$	$\neg Q$
	a_1	1	3	0	0
	<i>a</i> ₂	2	1	0	0
	<i>a</i> ₃	3	2	0	0

 $({0,1,2,3}, max, min, 0, 3)$

π_A :	Α	P	Q	$\neg P$	$\neg Q$
	a_1	1	3	0	0
	<i>a</i> ₂	2	1	0	0
	<i>a</i> ₃	3	2	0	0

 \sim

π_A :	Α	P	Q	$\neg P$	$\neg Q$	π_B :	В	P	Q	$\neg P$	$\neg \zeta$
				0		· · · · · · · · · · · · · · · · · · ·	b_1	3	1	0	0
	a ₂	2	1	0	0	₹ :	<i>b</i> ₂	1	2	0	0
	<i>a</i> ₃	3	2	0	0		<i>b</i> ₃	2	3	0	0

π_A :	Α	P	Q	$\neg P$	$\neg Q$
	a_1	1	3	0	0
	<i>a</i> ₂	2	1	0	0
	<i>a</i> ₃	3	2	0	0

	π_B :	В	P	Q	$\neg P$	$\neg Q$
0.4		b_1	3	1	0	0
7		<i>b</i> ₂	1	2	0	0
		<i>b</i> ₃	2	3	0	0

π_A :	Α	P	Q	$\neg P$	$\neg Q$
	a_1	1	3	0	0
	<i>a</i> ₂	2	1	0	0
	<i>a</i> ₃	3	2	0	0

	π_B :	В	P	Q	$\neg P$	$\neg Q$
0//		b_1	3	1	0	0
7		b_2	1	2	0	0
		<i>b</i> ₃	2	3	0	0

π_A :	Α	P	Q	$\neg P$	$\neg Q$
	a_1	1	3	0	0
	<i>a</i> ₂	2	1	0	0
	<i>a</i> ₃	3	2	0	0

	π_B :	В	P	Q	$\neg P$	$\neg Q$
0/1	,	b_1	3	1	0	0
7		<i>b</i> ₂	1	2	0	0
		<i>b</i> ₃	2	3	0	0

π_A :	Α	P	Q	$\neg P$	$\neg Q$
	a_1	1	3	0	0
	<i>a</i> ₂	2	1	0	0
	<i>a</i> ₃	3	2	0	0

	π_B :	В	P	Q	$\neg P$	$\neg Q$
0//		b_1	3	1	0	0
¥		b_2	1	2	0	0
		<i>b</i> ₃	2	3	0	0

 $({0,1,2,3}, max, min, 0, 3)$

π_A :	Α	P	Q	$\neg P$	$\neg Q$	π_B :	В	P	Q	$\neg P$	$\neg Q$
	a_1	1	3	0	0	2	b_1	3	1	0	0
	a_2	2	1	0	0	<u></u>	b_2	1	2	0	0
	<i>a</i> ₃	3	2	0	0		<i>b</i> ₃	2	3	0	0

 $\pi_A \llbracket \varphi \rrbracket \stackrel{?}{=} \pi_B \llbracket \varphi \rrbracket$ for all $\varphi \in \mathsf{FO}$

 $({0,1,2,3}, max, min, 0, 3)$

π_A :	Α	P	Q	$\neg P$	$\neg Q$
	a_1	1	3	0	0
	a ₂	2	1	0	0
	<i>a</i> ₃	3	2	0	0

В	Р	Q	$\neg P$	$\neg Q$
b_1	3	1	0	0
b_2	1	2	0	0
<i>b</i> ₃	2	3	0	0
	b_1 b_2	b_1 3 b_2 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

$$\pi_A \llbracket \varphi \rrbracket \stackrel{?}{=} \pi_B \llbracket \varphi \rrbracket$$
 for all $\varphi \in \mathsf{FO}$

 $({0,1,2,3}, max, min, 0, 3)$

π_A : A		P	Q	$\neg P$	$\neg Q$
,	a_1	1	3	0	0
	<i>a</i> ₂	2	1	0	0
	<i>a</i> ₃	3	2	0	0

π_B :	В	P	Q	$\neg P$	$\neg Q$
,	b_1	3	1	0	0
	b_2	1	2	0	0
	<i>b</i> ₃	2	3	0	0

How to prove equivalence?

Reduction via Homomorphisms

$$({0,1,2,3}, max, min, 0, 3)$$

π_A :	Α	P	Q	$\neg P$	$\neg Q$	$\pi_{\it E}$	s:B_	P	Q	$\neg P$	$\neg Q$
	a_1	1	3	0	0	!	b_1	3	1	0	0
	a ₂	2	1	0	0	\neq	b_2	1	2	0	0
	<i>a</i> ₃	3	2	0	0		<i>b</i> ₃	2	3	0	0
			$\pi_A \llbracket \varphi rbracket$		\neq	,	$\pi_B[\![q]$	o]			

Reduction via Homomorphisms

$$({0,1,2,3}, max, min, 0, 3)$$

$\pi_{\mathcal{A}}$:	Α	P	Q	$\neg P$	$\neg Q$	$\pi_{\mathcal{B}}$:	В	P	Q	$\neg P$	$\neg Q$
,	a_1	1	3	0	0	!	b_1	3	1	0	0
	a ₂	2	1	0	0	≠	<i>b</i> ₂	1	2	0	0
	<i>a</i> ₃	3	2	0	0		<i>b</i> ₃	2	3	0	0
		1	=	π_{A}	o 1	\neq		$\pi_B \llbracket q$	o 1	=	2

Reduction via Homomorphisms

$$\equiv$$
 vs. \cong in the Finite

$$h: (\{0,1,2,3\}, \max, \min, 0,3) \rightarrow \mathbb{B}$$

$$= \pi_{\mathbf{A}} \llbracket \varphi \rrbracket \qquad 7$$

π_B :	В	P	Q	$\neg P$	$\neg Q$
,	b_1	3	1	0	0
	b_2	1	2	0	0
	<i>b</i> ₃	2	3	0	0
	π_B :	b_1 b_2	$\begin{array}{c c} b_1 & 3 \\ \hline b_2 & 1 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $\pi_B \llbracket \varphi \rrbracket$

Reduction via Homomorphisms

$$\equiv$$
 vs. \cong in the Finite

$$h: (\{0,1,2,3\}, \max, \min, 0,3) \rightarrow \mathbb{B}$$

 $0 = h(1) = h(\pi_A [\![\varphi]\!])$

:	В	P	Q	$\neg P$	$\neg Q$
	b_1	3	1	0	0
	b_2	1	2	0	0
	<i>b</i> ₃	2	3	0	0

$$\neq h(\pi_B\llbracket\varphi\rrbracket) = h(2) = 1$$

$$\equiv$$
 vs. \cong in the Finite

$$h: (\{0,1,2,3\}, \max, \min, 0,3) \rightarrow \mathbb{B}$$

:	В	P	Q	$\neg P$	$\neg Q$
	b_1	3	1	0	0
	b_2	1	2	0	0
	<i>b</i> ₃	2	3	0	0

$$0 = h(1) = h \circ \pi_A \llbracket \varphi \rrbracket$$

$$\neq h \circ \pi_B \llbracket \varphi \rrbracket = h(2) = 1$$

$$= n(2) = 1$$

Reduction via Homomorphisms

$$= \text{vs.} \cong \text{in the Finite}$$

$$h: (\{0,1,2,3\}, \max, \min, 0,3) \to \mathbb{B}$$

$$Q \mid \neg P \mid \neg Q$$

$$1 \mid 0 \mid 0$$

$$0 \mid 0 \mid 0$$

$$\cong$$

$$\frac{b_1 \mid 1 \mid 0 \mid 0 \mid 0 }{b_2 \mid 0 \mid 1 \mid 0 \mid 0}$$

$$\text{How to prove equivalence?}$$

$$0 = h(1) = h \circ \pi_A \llbracket \varphi \rrbracket \qquad \neq \qquad$$

0

 $(h \circ \pi_A)$:

 a_2

$$\neq h_0 \pi_B \llbracket \varphi \rrbracket = h(2) = 1 \quad \nleq$$

 b_3

Reduction via Homomorphisms

$$\equiv$$
 vs. \cong in the Finite

$$h: (\{0,1,2,3\}, \max, \min, 0,3) \rightarrow \mathbb{B}$$

$$0 = h(1) = h \circ \pi_A \llbracket \varphi \rrbracket$$

$$\neq \qquad \qquad h \circ \pi_B \llbracket \varphi \rrbracket \qquad = h(2) = 1 \qquad \nleq$$

$$= h(2) = 1$$

Reduction via Homomorphisms

1 Find a separating set of homomorphisms $h: \mathcal{S} \to \mathbb{B}$ such that for all $s \neq t \in \mathcal{S}$ we have that $h(s) \neq h(t)$ for some $h \in H$.

= vs \cong in the Finite

$$h: (\{0,1,2,3\}, \max, \min, 0,3) \rightarrow \mathbb{B}$$

How to prove equivalence?

$$0 = h(1) = h \circ \pi_A \llbracket \varphi \rrbracket$$

$$\neq \qquad \qquad h \circ \pi_B \llbracket \varphi \rrbracket \qquad = h(2) = 1 \qquad \not 2$$

$$= h(2) = 1$$

Reduction via Homomorphisms

- 1) Find a separating set of homomorphisms $h: \mathcal{S} \to \mathbb{B}$ such that for all $s \neq t \in \mathcal{S}$ we have that $h(s) \neq h(t)$ for some $h \in H$.
- 2 Prove that $(h \circ \pi_A) \equiv (h \circ \pi_B)$ for all $h \in H$.

$$\equiv$$
 vs. \cong in the Finite

$$h: (\{0,1,2,3\}, \max, \min, 0,3) \rightarrow \mathbb{B}$$

How to prove equivalence?

$$0 = h(1) = h \circ \pi_A \llbracket \varphi \rrbracket$$

$$\neq h \circ \pi_B \llbracket \varphi \rrbracket = h(2) = 1 \quad \nleq$$

$$= h(2) = 1$$

Reduction via Homomorphisms

- 1) Find a separating set of homomorphisms $h: \mathcal{S} \to \mathbb{B}$ such that for all $s \neq t \in \mathcal{S}$ we have that $h(s) \neq h(t)$ for some $h \in H$.
- 2 Prove that $(h \circ \pi_A) \equiv (h \circ \pi_B)$ for all $h \in H$.

This implies $\pi_A \equiv \pi_B$.

$$({0,1,2,3}, max, min, 0, 3)$$

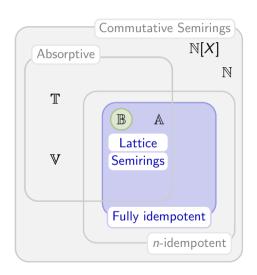
$$A = \begin{bmatrix} A & P & Q & \neg P & \neg Q \\ \hline a_1 & 1 & 3 & 0 & 0 \\ \hline a_2 & 2 & 1 & 0 & 0 \\ \hline a_3 & 3 & 2 & 0 & 0 \end{bmatrix}$$

How to prove equivalence?

Reduction via Homomorphisms

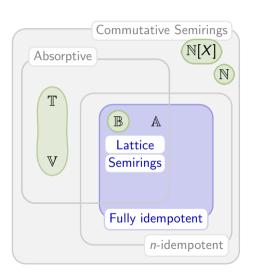
- 1 Find a separating set of homomorphisms $h: \mathcal{S} \to \mathbb{B}$ such that for all $s \neq t \in \mathcal{S}$ we have that $h(s) \neq h(t)$ for some $h \in H$.
- 2 Prove that $(h \circ \pi_A) \equiv (h \circ \pi_B)$ for all $h \in H$.

This implies $\pi_A \equiv \pi_B$.



Grädel, Mrkonjić, 2021

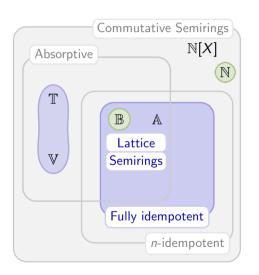
For any fully idempotent $\mathcal{S} \ncong \mathbb{B}$ there are finite \mathcal{S} -interpretations $\pi_A \ncong \pi_B$ such that $\pi_A \equiv \pi_B$.



Grädel, Mrkonjić, 2021

For any fully idempotent $\mathcal{S} \ncong \mathbb{B}$ there are finite \mathcal{S} -interpretations $\pi_A \ncong \pi_B$ such that $\pi_A \equiv \pi_B$.

 \equiv and \cong coincide on finite \mathbb{N} -, $\mathbb{N}[X]$ -, \mathbb{T} -, and \mathbb{V} -interpretations.



Grädel, Mrkonjić, 2021

For any fully idempotent $\mathcal{S}\ncong\mathbb{B}$ there are finite \mathcal{S} -interpretations $\pi_{A}\ncong\pi_{B}$ such that $\pi_{A}\equiv\pi_{B}$.

 \equiv and \cong coincide on finite \mathbb{N} -, $\mathbb{N}[X]$ -, \mathbb{T} -, and \mathbb{V} -interpretations.

Every finite \mathbb{N} -interpretation is axiomatisable by a single axiom. This is not true for \mathbb{V} and \mathbb{T} .

Axiomatisability

 $\pi_A \equiv \pi_B \Leftrightarrow \pi_A \cong \pi_B$ for finite π_A, π_B

EF Games

D wins $G_m(\pi_A, \pi_B)$ $\Leftrightarrow \pi_A \equiv_m \pi_B$

Hanf Locality

Hanf equivalence implies elementary equivalence.

Gaifman Locality

Every $\varphi \in \mathsf{FO}$ has a Gaifman normal form.

Logical Results

Compactness

 $\Phi \models \psi \Leftrightarrow \Phi_0 \models \psi$ for some finite $\Phi_0 \subseteq \Phi$

0–1 Laws

Every $\varphi \in \mathsf{FO}$ almost surely evaluates to $s \in \mathcal{S}$

1 How can classical model-theoretic notions be generalised?

② In which semirings do the classical results survive? Which algebraic properties are responsible for this?

$A \\ xiomatis ability$

 $\pi_A \equiv \pi_B \Leftrightarrow \pi_A \cong \pi_B$ for finite π_A, π_B

EF Games

D wins $G_m(\pi_A, \pi_B)$ $\Leftrightarrow \pi_A \equiv_m \pi_B$

Hanf Locality

Hanf equivalence implies elementary equivalence.

Gaifman Locality

Every $\varphi \in FO$ has a Gaifman normal form.

Logical Results

Compactness

 $\Phi \models \psi \Leftrightarrow \Phi_0 \models \psi$ for some finite $\Phi_0 \subseteq \Phi$

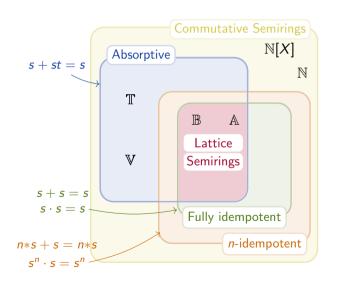
0-1 Laws

Every $\varphi \in \mathsf{FO}$ almost surely evaluates to $s \in \mathcal{S}$

1 How can classical model-theoretic notions be generalised?

② In which semirings do the classical results survive? Which algebraic properties are responsible for this?

Semirings and their Properties



Classical semantics:

$$\mathbb{B} = (\{0,1\}, \vee, \wedge, 0, 1)$$

Access restrictions:

 (S, \max, \min, s, t)

Cost analysis:

$$\mathbb{T} = (\mathbb{R}_+^\infty, \mathsf{min}, +, \infty, 0)$$

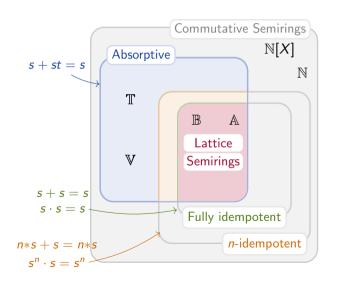
Confidence:

$$\mathbb{V} = ([0,1],\mathsf{max},\cdot,0,1)$$

Evaluation strategies:

$$\mathbb{N}, \mathbb{N}[X]$$

Semirings and their Properties



Classical semantics:

$$\mathbb{B} = (\{0,1\}, \vee, \wedge, 0,1)$$

Access restrictions:

 (S, \max, \min, s, t)

Cost analysis:

$$\mathbb{T} = (\mathbb{R}_+^\infty, \mathsf{min}, +, \infty, 0)$$

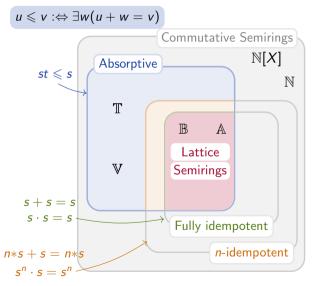
Confidence:

$$\mathbb{V} = ([0,1],\mathsf{max},\cdot,0,1)$$

Evaluation strategies:

 $\mathbb{N}, \mathbb{N}[X]$

Semirings and their Properties



Classical semantics:

$$\mathbb{B} = (\{0,1\}, \vee, \wedge, 0, 1)$$

Access restrictions:

 (S, \max, \min, s, t)

Cost analysis:

$$\mathbb{T} = (\mathbb{R}_+^\infty, \mathsf{min}, +, \infty, 0)$$

Confidence:

$$\mathbb{V} = ([0,1],\mathsf{max},\cdot,0,1)$$

Evaluation strategies:

 $\mathbb{N}, \mathbb{N}[X]$

If $\Phi \subseteq FO$ is unsatisfiable, then there is some finite unsatisfiable $\Phi_0 \subseteq \Phi$.

If $\Phi \subseteq FO$ is unsatisfiable, then there is some finite unsatisfiable $\Phi_0 \subseteq \Phi$.

Unsatisfiability in
$$\mathcal{S}$$
:
$$\pi\llbracket \Phi \rrbracket = \prod_{\varphi \in \Phi} \pi\llbracket \varphi \rrbracket = 0 \text{ for all } \pi$$

If $\Phi \subseteq FO$ is unsatisfiable, then there is some finite unsatisfiable $\Phi_0 \subseteq \Phi$.

Unsatisfiability in
$$\mathcal{S}$$
:
$$\pi\llbracket \Phi \rrbracket = \prod \ \pi\llbracket \varphi \rrbracket = 0 \text{ for all } \pi$$

Weak Compactness

If $\Phi \subseteq FO$ is unsatisfiable, then there is some finite unsatisfiable $\Phi_0 \subseteq \Phi.$

Every absorptive semiring has weak compactness.

Unsatisfiability in
$$\mathcal{S}$$
:
$$\pi \llbracket \Phi \rrbracket = \prod \pi \llbracket \varphi \rrbracket = 0 \text{ for all } \pi$$

Weak Compactness

If $\Phi \subseteq FO$ is unsatisfiable, then there is some finite unsatisfiable $\Phi_0 \subseteq \Phi.$

Every absorptive semiring has weak compactness.

Unsatisfiability in
$$\mathcal{S}$$
:
$$\pi \llbracket \Phi \rrbracket = \prod \pi \llbracket \varphi \rrbracket = 0 \text{ for all } \pi$$

Weak Compactness _

If $\Phi \subseteq FO$ is unsatisfiable, then there is some finite unsatisfiable $\Phi_0 \subseteq \Phi.$

Every absorptive semiring has weak compactness.

Strong Compactness _

If $\Phi \models \psi$, then $\Phi_0 \models \psi$ for some finite $\Phi_0 \subseteq \Phi$.

Unsatisfiability in
$$\mathcal{S}$$
:
$$\pi \llbracket \Phi \rrbracket = \prod \pi \llbracket \varphi \rrbracket = 0 \text{ for all } \pi$$

Weak Compactness _

If $\Phi \subseteq FO$ is unsatisfiable, then there is some finite unsatisfiable $\Phi_0 \subseteq \Phi$.

Every absorptive semiring has weak compactness.

Strong Compactness _

If $\Phi \models \psi$, then $\Phi_0 \models \psi$ for some finite $\Phi_0 \subseteq \Phi$.

Unsatisfiability in
$$\mathcal{S}$$
:
$$\pi \llbracket \Phi \rrbracket = \prod \pi \llbracket \varphi \rrbracket = 0 \text{ for all } \pi$$

Weak Compactness _

If $\Phi \subseteq FO$ is unsatisfiable, then there is some finite unsatisfiable $\Phi_0 \subseteq \Phi$.

Every absorptive semiring has weak compactness.

Strong Compactness -

If
$$\Phi \models_{\mathcal{S}} \psi$$
, then $\Phi_0 \models_{\mathcal{S}} \psi$ for some finite $\Phi_0 \subseteq \Phi$.

Entailment in S:

$$\pi \llbracket \Phi \rrbracket \leqslant \pi \llbracket \psi \rrbracket$$
 for all π

Unsatisfiability in \mathcal{S} : $\pi \llbracket \Phi \rrbracket = \prod \pi \llbracket \varphi \rrbracket = 0 \text{ for all } \pi$

Compactness Theorem

Weak Compactness _

If $\Phi \subseteq FO$ is unsatisfiable, then there is some finite unsatisfiable $\Phi_0 \subseteq \Phi$.

Every absorptive semiring has weak compactness.

Strong Compactness

If
$$\Phi \models_{\mathcal{S}} \psi$$
, then $\Phi_0 \models_{\mathcal{S}} \psi$ for some finite $\Phi_0 \subseteq \Phi$.

Entailment in \mathcal{S} :

$$\pi \llbracket \Phi \rrbracket \leqslant \pi \llbracket \psi \rrbracket$$
 for all π

Unsatisfiability in \mathcal{S} : $\pi \llbracket \Phi \rrbracket = \prod_{\varphi \in \Phi} \pi \llbracket \varphi \rrbracket = 0 \text{ for all } \pi$

Compactness Theorem

Weak Compactness _

If $\Phi \subseteq FO$ is unsatisfiable, then there is some finite unsatisfiable $\Phi_0 \subseteq \Phi$.

Every absorptive semiring has weak compactness.

Strong Compactness

If
$$\Phi \models_{\mathcal{S}} \psi$$
, then $\Phi_0 \models_{\mathcal{S}} \psi$ for some finite $\Phi_0 \subseteq \Phi$.

Entailment in \mathcal{S} :

$$\pi \llbracket \Phi \rrbracket \leqslant \pi \llbracket \psi \rrbracket$$
 for all π

Consider $\varphi = \exists x Px$.

• $\varphi \not\models_{\mathcal{S}} \varphi \wedge \varphi$ unless \mathcal{S} is multiplicatively idempotent.

- $\varphi \not\models_{\mathcal{S}} \varphi \land \varphi$ unless \mathcal{S} is multiplicatively idempotent.
- $\varphi^n \not\models_{\mathcal{S}} \varphi^{n+1}$ unless \mathcal{S} is *n*-idempotent.

- $\varphi \not\models_{\mathcal{S}} \varphi \wedge \varphi$ unless \mathcal{S} is multiplicatively idempotent.
- $\varphi^n \not\models_{\mathcal{S}} \varphi^{n+1}$ unless \mathcal{S} is *n*-idempotent.

- $\varphi \not\models_{\mathcal{S}} \varphi \wedge \varphi$ unless \mathcal{S} is multiplicatively idempotent.
- $\varphi^n \not\models_{\mathcal{S}} \varphi^{n+1}$ unless \mathcal{S} is *n*-idempotent.

- $\varphi \not\models_{\mathcal{S}} \varphi \wedge \varphi$ unless \mathcal{S} is multiplicatively idempotent.
- $\varphi^n \not\models_{\mathcal{S}} \varphi^{n+1}$ unless \mathcal{S} is *n*-idempotent.

$$\Phi = \underbrace{\{\varphi^m \mid m \in \omega\}}_{\pi \llbracket \varphi \rrbracket^{\infty}} \models_{\mathcal{S}} \underbrace{\forall y \varphi}_{\pi \llbracket \varphi \rrbracket^{|A|}}$$

- $\varphi \not\models_{\mathcal{S}} \varphi \wedge \varphi$ unless \mathcal{S} is multiplicatively idempotent.
- $\varphi^n \not\models_{\mathcal{S}} \varphi^{n+1}$ unless \mathcal{S} is *n*-idempotent.

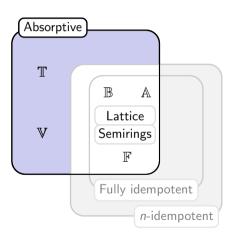
$$\Phi = \underbrace{\{\varphi^{m} \mid m \in \omega\}}_{\pi \llbracket \varphi \rrbracket^{\infty}} \models_{\mathcal{S}} \underbrace{\forall y \varphi}_{\pi \llbracket \varphi \rrbracket^{|A|}}$$

$$\Phi_0 = \underbrace{\{\varphi^m \mid m \leqslant k\}}_{\pi \llbracket \varphi \rrbracket^n}$$

- $\varphi \not\models_{\mathcal{S}} \varphi \wedge \varphi$ unless \mathcal{S} is multiplicatively idempotent.
- $\varphi^n \not\models_{\mathcal{S}} \varphi^{n+1}$ unless \mathcal{S} is *n*-idempotent.

$$\Phi = \underbrace{\{\varphi^{m} \mid m \in \omega\}}_{\pi \llbracket \varphi \rrbracket^{\infty}} \models_{\mathcal{S}} \underbrace{\forall y \varphi}_{\pi \llbracket \varphi \rrbracket^{|A|}}$$

$$\Phi_0 = \underbrace{\{\varphi^m \mid m \leqslant k\}}_{\pi \llbracket \varphi \rrbracket^n} \not\models_{\mathcal{S}} \underbrace{\forall y \varphi}_{\pi \llbracket \varphi \rrbracket^{|A|}} \text{ unless } \mathcal{S} \text{ is } n\text{-idempotent.}$$

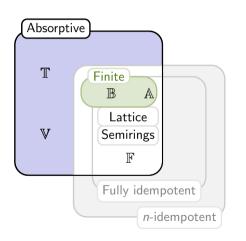


B., Dawar, Grädel, Mrkonjić, Naaf, 2025

Strong compactness fails for semirings that are *not* n-idempotent for any n.

Absorptive \mathbb{T} A Lattice \mathbb{V} Semirings Fully idempotent *n*-idempotent B., Dawar, Grädel, Mrkonjić, Naaf, 2025

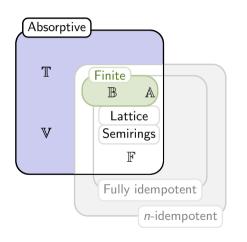
Strong compactness fails for semirings that are *not* n-idempotent for any n.



B., Dawar, Grädel, Mrkonjić, Naaf, 2025

Strong compactness fails for semirings that are *not* n-idempotent for any n.

Strong compactness generalizes to finite semirings.

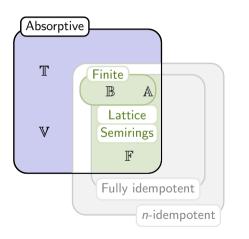


B., Dawar, Grädel, Mrkonjić, Naaf, 2025

Strong compactness fails for semirings that are *not* n-idempotent for any n.

Strong compactness generalizes to finite semirings.

→ Reduction to classical FO over signature $\{R_s, R_s^{\neg} \mid R \in \tau, s \in \mathcal{S}\}$



B., Dawar, Grädel, Mrkonjić, Naaf, 2025

Strong compactness fails for semirings that are *not* n-idempotent for any n.

Strong compactness generalizes to finite semirings.

→ Reduction to classical FO over signature $\{R_s, R_s^{\neg} \mid R \in \tau, s \in \mathcal{S}\}$

Strong compactness also holds for lattice semirings.

Axiomatisability in the Finite

by $\Phi\subseteq FO$

by $\varphi \in \mathsf{FO}$

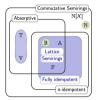
Compactness

weak

strong

Axiomatisability in the Finite

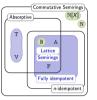
by $\Phi \subseteq \mathsf{FO}$



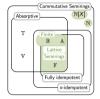
by $\varphi \in \mathsf{FO}$

EF Games

Bijection Games



0-1 Laws



Compactness

weak

strong

Hanf Locality

for formulae

Gaifman Locality

for sentences

