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Strong Compactness
B., Dawar, Gradel, Mrkonji¢, Naaf, 2025
Strong compactness fails for semirings

that are not n-idempotent for any n.

Strong compactness generalizes to fi-
nite semirings.

— Reduction to classical FO over
signature {Rs, R, | Re 7,5 € S}

Strong compactness also holds for lat-
tice semirings.
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