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Evaluating join queries using factorized representations
Factorized databases
[Olteanu, Závodný (TODS 2015)]

P : Programm

Kino Film Zeit

Babylon Casablanca 17:30
Babylon Gravity 20:15
Filmtheater am Friedrichshain Resident Evil 20:00
Filmtheater am Friedrichshain Resident Evil 21:30
Filmtheater am Friedrichshain Resident Evil 23:00
Casablanca Blade Runner 15:30
Casablanca Alien 18:15
Casablanca Blade Runner 20:30
Casablanca Resident Evil 20:30
Kino International Casablanca 18:00
Kino International Brazil 20:00
Kino International Brazil 22:00
Moviemento Gravity 17:00
Moviemento Gravity 19:30
Moviemento Alien 22:00
Urania Monuments Men 17:00
Urania Monuments Men 20:00

F : Film

Name Regisseur Schauspieler

Alien Ridley Scott Sigourney Weaver
Blade Runner Ridley Scott Harrison Ford
Blade Runner Ridley Scott Sean Young
Brazil Terry Gilliam Jonathan Pryce
Brazil Terry Gilliam Kim Greist
Casablanca Michael Curtiz Humphrey Bogart
Casablanca Michael Curtiz Ingrid Bergmann
Gravity Alfonso Cuaron Sandra Bullock
Gravity Alfonso Cuaron George Clooney
Monuments Men George Clooney George Clooney
Monuments Men George Clooney Matt Damon
Resident Evil Paul Anderson Milla Jovovich
Terminator James Cameron Arnold Schwarzenegger
Terminator James Cameron Linda Hamilton
Terminator James Cameron Michael Biehn
Moonlight Barry Jenkins Naomie Harris

’(x; y ; z) =

R(x; y) ∧ S(y) ∧ T (y; z)

Input

Output

evaluate
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’(x; y ; z) =

R(x; y) ∧ S(y) ∧ T (y; z)

Input

evaluate

factorized

representation

enumerate

count 34

● Compressed representation: much smaller than result relation.

● Efficient generation of result: enumeration with O(1) or delay.
● Counting (and other statistics) in O(poly(size of representation)).
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Relational {∪;×}-circuits = d-representations

G H {∪;×}-circuit for Hom(G;H)

x

y

z

a1
a2
a3

b1
b2
b3

d1
d2
d3

c

G ∼ ’(x; y ; z) = E(x; y) ∧ E(y; z) ∧ E(x; z) H ∼ database

● Inputs: partial mappings {x ↦ a}
● ∪-gates: union of partial mappings over same domains

● ×-gates: Cartesian product of partial mappings over disjoint domains

● deterministic circuits: all ∪-gates compute disjoint unions

● for deterministic circuits of depth d and size N:
O(d)-delay enumeration;

O(N) counting
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Closely related: Knowledge Compilation

(A ∨B ∨ C)

∧ (B ∨ C ∨D)

∧ (A ∨B ∨D)

∧ (B ∨ C ∨D)

∧ (A ∨ C ∨D)

∧ (A ∨B ∨ C)

∧ (A ∨B ∨D)

∧ (A ∨ C ∨D)

Input

compile

Representation as d-DNNF

A B D B C C D A

∧ ∧ ∧

∨ ∨

∧ ∧

∨

enumerate

(0, 0, 1, 0) (1, 0, 0, 1)

count 8

● (deterministic) {∪;×}-circuits ≈ multi-valued monotone (d-)DNNF

Another application of KC in DB theory: provenance polynomials (☞ Dan’s talk)

● {∪;×}-circuits are strictly more succinct than multilinear & homogeneous provenance circuits
over some semi-ring.
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Recent surveys on this:

● Amarilli, Capelli: Tractable Circuits in Database Theory, 2024, http://arxiv.org/abs/2407.01127

● Amarilli, Arenas, Choi, Monet, Van Den Broeck, Wang: A Circus of Circuits: Connections Between
Decision Diagrams, Circuits, and Automata, 2024, http://arxiv.org/abs/2404.09674
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Flat representations

Worst-case is the flat representation in O(number of homomorphisms):

⋃
h∶V (G)→V (H)

⨉
x∈V (G)

{x ↦ h(x)}

Theorem [Atserias, Grohe, Marx 2013]

The number of homomorphism from G to H is at most O(∥H∥ȷ∗(G)).
For every G there are H such that there are Ω(∥H∥ȷ∗(G)) homomorphisms from G to H.

ȷ∗(G) ∶= min. fractional edge cover number = max. fractional independent set

● Worst case instance H has relations Ri = [Nsi1 ] × ⋯ × [Nsir ]
● Worst case result relation: [Ns1] × ⋯ × [Nsk ] where (s1; : : : ; sk) max. fractional IS of G

● Has linear size circuits: ⨉ki=1⋃
si
a=1{xi ↦ a}
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For which queries can we always get small circuits?

PART I: Lets consider graphs first.
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Examples of succinctly represeantable query shapes: trees

A tree shaped join query:

x1
G ∶

x2

x3

x4
x5
x6
x7
x8

E(x1; x2) ∧E(x1; x3) ∧E(x2; x4) ∧E(x2; x5) ∧E(x2; x6) ∧E(x3; x7) ∧E(x3; x8)

Gates:

C iv represents
”
subtree query“ rooted at xi starting at v in H.

Wires:
C iv = {xi ↦ v} × ⨉

(xi ;xj)∈E(G)

⋃
(v;w)∈E(H)

Cjw

Output:
C = ⋃

v∈V (H)

C1
v
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Examples of succinctly represeantable query shapes: tree decompositions
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Examples of succinctly represeantable query shapes: tree decompositions

Main Idea: For each bag ˛(t), t ∈ V (T ) and partial homomorphism h∶˛(t) → V (H):
Cth represents

”
subtree query“ rooted at t and extending h.

Theorem [Olteanu, Závodný 2015]

For every G and arbitrarily large H there is a deterministic {∪;×}-circuit representing Hom(G;H)
of size O(∥H∥tw(G)+1).a

a
In fact, upper bound is stated in terms of the smaller fractional hypertree width (fhtw) – but for graphs G we have fhtw(G) ≈ tw(G).
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a
In fact, upper bound is stated in terms of the smaller fractional hypertree width (fhtw) – but for graphs G we have fhtw(G) ≈ tw(G).

Theorem [B., Vinall-Smeeth 2025]

For every graph G there are arbitrarily large H such that any {∪;×}-circuit representing
Hom(G;H) has size

Ω(∥H∥tw(G)/20):

Does not matter if union is disjoint in the worst-case.
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Warm-up: The k-clique query
Lower bound argument (1/3)

Lemma [B., Vinall-Smeeth 2023]

For any k ∈ N there are arbitrary large graphs H with m edges such that any {∪;×}-circuit
representing all k-cliques has size Ω(mk/2/ log3k−2(m)).

● Flat representation has size O(#k-Cliques in H) = O(mk/2).

For a lower bound we need instances with:

● many k-cliques

● no large complete bipartite subgraphs (= combinatorial rectangles)

We pick a random graph on n vertices (edge probability 1
2),

w.h.p. it has Ω(mk/2) k-cliques and no Ka;a subgraph for a ≥ 3 log n.

● A gate in the circuit is small if projection on each variable of computed relation is < 3 log n.
● Main insight: A ×-gate has at most one child that is not small.
⇒ It can only represent n logc n mappings.
⇒ There are many such gates.
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Large treewidth and highly connected sets
Lower bound argument (2/3)

For each W ⊆ V (G) a W -balanced separator disconnects G so that each connected component
has at most 1

2 ∣W ∣ elements from W .

For every W there is a W -balanced separator of size tw(G) + 1:
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Large treewidth and highly connected sets
Lower bound argument (2/3)

For each W ⊆ V (G) a W -balanced separator disconnects G so that each connected component
has at most 1

2 ∣W ∣ elements from W .

For every W there is a W -balanced separator of size tw(G) + 1:

Conversely, large treewidth Ô⇒ ex. large highly connected set:

Lemma

If tw(G) > 3k , then there is an W ⊆ V (G) of size 2k + 1
that has no W -balanced separator of size k .
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Lower bound via balanced rectangle covers [Bova, Capelli, Mengel, Slivovsky 2016]

Lower bound argument (3/3)

● Each {∪;×}-circuit contains a gate g that defines a balanced partition
(X;Y ) = (var(g); V ∖ var(g)) of W (where 1

3 ∣W ∣ ≤ ∣X ∩W ∣; ∣Y ∩W ∣ ≤
2
3 ∣W ∣).

● There has to be a large matching (size ≥ k3 ) crossing the partition (X;Y )
(otherwise we can find a small balanced separator of W ).

● Projection to at least one endpoint of each matching edge has to be small (< 3 log n).

● g responsible for few homomorphisms ⇒ there are many such g .
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For which queries can we always get small circuits?

PART II: Arbitrary relational structures
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Acyclic Join Queries

Relations of large arity: treewidth not the right measure

R(x1; x2; x3; x4; x5) ∧ S(x4; x5; x6; x7) ∧ T (x7; x8; x9)

x1 x2 x3 x4 x5 x6 x7 x8 x9R

S

T

● Acyclic query := has join-tree = tree decomp. where every bag corresponds to an atom.

●
”
projections on a bag“ bounded by single relations in H

● get deterministic {∪;×}-circuits of size O(∥H∥)
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Upper bounds via submodular width

Conditioned on the exponential time hypothesis, submodular width (subw) of G characterises
FPT-solvability of the decision problem [Marx 2013] (again ☞ Dan’s talk).

Lemma [Marx 2013] [B., Schweikardt 2019]

If subw(G) ≤ w , then there are ‘ = f (G) pairs (Gi ;Hi), where Gi is acyclic and ∥Hi∥ ≤ ∥H∥O(w)
such that

Hom(G;H) = Hom(G1;H1) ∪⋯ ∪Hom(G‘;H‘):

● Get {∪;×}-circuits of size f (G)∥H∥O(subw(G)).
● Union at top not disjoint ⇒ cannot be used for counting.

● Can be used for enumeration with f (G)∥H∥O(subw(G)) preprocessing and f (G) delay.
[B., Schweikardt 2019]
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Lower bounds via submodular width

Theorem [B., Vinall-Smeeth 2025]

For every G there are arbitrarily large H of size ∥H∥ such that any {∪;×}-circuit representing all
homomorphisms from G to H has size

Ω(∥H∥"⋅subw(G)
1/4

):

Similar proof strategy as before:

● Use a
”
highly connected“ set W (more complicated for subw than for tw). [Marx 2013]

● Define a worst-case instance with many homomorphisms.

● Put in randomness to destroy all large rectangles (
”
bipartite subgraphs“),

while keeping many homomorphisms intact.

● Lower bound for rectangle cover again implies lower bound on circuit size.
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Conclusion

Main results: bounds on the size of {∪;×}-circuits for homomorphisms from fixed G to large H:

● For graphs, digraphs: O(∥H∥tw(G)+1) and Ω(∥H∥tw(G)/20)

● In general: ∥H∥O(subw(G)) and ∥H∥Ω(subw(∣H∣)1/4)

Open: Characterisation for deterministic circuits in the general case. Main obstacles:

● Need to understand disjoint multi-partition rectangle covers better.

● The parameterized counting complexity of join queries is also open.

Related CSP result for the other side [B., Mengel, Wilhelm 2024]:

If H is a class of right-hand-side structures (databases), then

Hom(G;H) has polynomial-size {∪;×}-circuits for all G and H ∈ H
⇐⇒

H is strongly blockwise decomposable.
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