Succinct representations for join query evaluation

Christoph Berkholz

Finite and Algorithmic Model Theory Workshop Les Houches (FMT 2025)

Based on a joint work with Harry Vinall-Smeeth.

Evaluating join queries using factorized representations

Factorized databases Output [Olteanu, Závodný (TODS 2015)] Input evaluate $\varphi(x, y, z) = R(x, y) \land S(y) \land T(y, z)$

Evaluating join queries using factorized representations

Factorized databases [Olteanu, Závodný (TODS 2015)] Input enumerate factorized representation count 34 evaluate $\varphi(x, y, z) =$ $R(x,y) \wedge S(y) \wedge T(y,z)$

- Compressed representation: much smaller than result relation.
- Efficient generation of result: enumeration with O(1) or delay.
- Counting (and other statistics) in O(poly(size of representation)).

- Inputs: partial mappings $\{x \mapsto a\}$
- U-gates: union of partial mappings over same domains

- Inputs: partial mappings $\{x \mapsto a\}$
- \cup -gates: union of partial mappings over same domains

- Inputs: partial mappings $\{x \mapsto a\}$
- $\bullet \ \cup\mbox{-gates:}$ union of partial mappings over same domains
- x-gates: Cartesian product of partial mappings over disjoint domains

- Inputs: partial mappings $\{x \mapsto a\}$
- $\bullet \ \cup\mbox{-gates:}$ union of partial mappings over same domains
- x-gates: Cartesian product of partial mappings over disjoint domains

- Inputs: partial mappings $\{x \mapsto a\}$
- $\bullet \ \cup\mbox{-gates:}$ union of partial mappings over same domains
- x-gates: Cartesian product of partial mappings over disjoint domains

- Inputs: partial mappings $\{x \mapsto a\}$
- $\bullet \ \cup\mbox{-gates:}$ union of partial mappings over same domains
- x-gates: Cartesian product of partial mappings over disjoint domains

- Inputs: partial mappings $\{x \mapsto a\}$
- $\bullet \ \cup\mbox{-gates:}$ union of partial mappings over same domains
- x-gates: Cartesian product of partial mappings over disjoint domains
- deterministic circuits: all ∪-gates compute disjoint unions

- Inputs: partial mappings $\{x \mapsto a\}$
- $\bullet \ \cup\mbox{-gates:}$ union of partial mappings over same domains
- x-gates: Cartesian product of partial mappings over disjoint domains
- deterministic circuits: all ∪-gates compute disjoint unions
- for deterministic circuits of depth *d* and size *N*:
 O(*d*)-delay enumeration;

- Inputs: partial mappings $\{x \mapsto a\}$
- $\bullet \ \cup\mbox{-gates:}$ union of partial mappings over same domains
- x-gates: Cartesian product of partial mappings over disjoint domains
- deterministic circuits: all ∪-gates compute disjoint unions
- for deterministic circuits of depth *d* and size *N*: *O*(*d*)-delay enumeration; *O*(*N*) counting

• (deterministic) {∪, ×}-circuits ≈ multi-valued monotone (d-)DNNF

• (deterministic) $\{\cup, \times\}$ -circuits \approx multi-valued monotone (d-)DNNF

Another application of KC in DB theory: provenance polynomials (B Dan's talk)

• {U, ×}-circuits are strictly more succinct than multilinear & homogeneous provenance circuits over some semi-ring.

Recent surveys on this:

- Amarilli, Capelli: Tractable Circuits in Database Theory, 2024, http://arxiv.org/abs/2407.01127
- Amarilli, Arenas, Choi, Monet, Van Den Broeck, Wang: A Circus of Circuits: Connections Between Decision Diagrams, Circuits, and Automata, 2024, http://arxiv.org/abs/2404.09674

Worst-case is the flat representation in O(number of homomorphisms):

 $\bigcup_{h:V(G)\to V(H)} \underset{x\in V(G)}{\times} \{x\mapsto h(x)\}$

Worst-case is the flat representation in *O*(number of homomorphisms):

 $\bigcup_{h:V(G)\to V(H)} \underset{x\in V(G)}{\times} \{x\mapsto h(x)\}$

Theorem [Atserias, Grohe, Marx 2013]

The number of homomorphism from G to H is at most $O(||H||^{\rho^*(G)})$. For every G there are H such that there are $\Omega(||H||^{\rho^*(G)})$ homomorphisms from G to H.

 $\rho^*(G) \coloneqq \min$. fractional edge cover number = max. fractional independent set

Worst-case is the flat representation in *O*(number of homomorphisms):

 $\bigcup_{h:V(G)\to V(H)} \underset{x\in V(G)}{\times} \{x\mapsto h(x)\}$

Theorem [Atserias, Grohe, Marx 2013]

The number of homomorphism from G to H is at most $O(||H||^{\rho^*(G)})$. For every G there are H such that there are $\Omega(||H||^{\rho^*(G)})$ homomorphisms from G to H.

 $\rho^*(G) \coloneqq \min$. fractional edge cover number = max. fractional independent set

• Worst case instance *H* has relations $R_i = [N^{s_{i_1}}] \times \cdots \times [N^{s_{i_r}}]$

Worst-case is the flat representation in O(number of homomorphisms):

 $\bigcup_{h:V(G)\to V(H)} \underset{x\in V(G)}{\times} \{x\mapsto h(x)\}$

Theorem [Atserias, Grohe, Marx 2013]

The number of homomorphism from G to H is at most $O(||H||^{\rho^*(G)})$. For every G there are H such that there are $\Omega(||H||^{\rho^*(G)})$ homomorphisms from G to H.

 $\rho^*(G) \coloneqq \min$. fractional edge cover number = max. fractional independent set

- Worst case instance *H* has relations $R_i = [N^{s_{i_1}}] \times \cdots \times [N^{s_{i_r}}]$
- Worst case result relation: $[N^{s_1}] \times \cdots \times [N^{s_k}]$ where (s_1, \ldots, s_k) max. fractional IS of G

Worst-case is the flat representation in *O*(number of homomorphisms):

 $\bigcup_{h:V(G)\to V(H)} \underset{x\in V(G)}{\times} \{x\mapsto h(x)\}$

Theorem [Atserias, Grohe, Marx 2013]

The number of homomorphism from G to H is at most $O(||H||^{\rho^*(G)})$. For every G there are H such that there are $\Omega(||H||^{\rho^*(G)})$ homomorphisms from G to H.

 $\rho^*(G) \coloneqq \min$. fractional edge cover number = max. fractional independent set

- Worst case instance *H* has relations $R_i = [N^{s_{i_1}}] \times \cdots \times [N^{s_{i_r}}]$
- Worst case result relation: $[N^{s_1}] \times \cdots \times [N^{s_k}]$ where (s_1, \ldots, s_k) max. fractional IS of G
- Has linear size circuits: $X_{i=1}^k \bigcup_{a=1}^{s_i} \{x_i \mapsto a\}$

For which queries can we always get small circuits?

For which queries can we always get small circuits? **PART I:** Lets consider graphs first.

A tree shaped join query:

 $E(x_1, x_2) \land E(x_1, x_3) \land E(x_2, x_4) \land E(x_2, x_5) \land E(x_2, x_6) \land E(x_3, x_7) \land E(x_3, x_8)$

A tree shaped join query:

 $E(x_1, x_2) \land E(x_1, x_3) \land E(x_2, x_4) \land E(x_2, x_5) \land E(x_2, x_6) \land E(x_3, x_7) \land E(x_3, x_8)$

Gates:

 C_v^i represents "subtree query" rooted at x_i starting at v in H.

A tree shaped join query:

 $E(x_1, x_2) \land E(x_1, x_3) \land E(x_2, x_4) \land E(x_2, x_5) \land E(x_2, x_6) \land E(x_3, x_7) \land E(x_3, x_8)$

Gates:

 C_v^i represents "subtree query" rooted at x_i starting at v in H.

Wires:

$$C_{v}^{i} = \left\{ x_{i} \mapsto v \right\} \times \bigotimes_{(x_{i}, x_{j}) \in E(G)} \bigcup_{(v, w) \in E(H)} C_{w}^{j}$$

A tree shaped join query:

 $E(x_1, x_2) \land E(x_1, x_3) \land E(x_2, x_4) \land E(x_2, x_5) \land E(x_2, x_6) \land E(x_3, x_7) \land E(x_3, x_8)$

Gates:

 C_v^i represents "subtree query" rooted at x_i starting at v in H.

Wires:

$$C_{v}^{i} = \left\{ x_{i} \mapsto v \right\} \times \bigotimes_{(x_{i}, x_{j}) \in E(G)} \bigcup_{(v, w) \in E(H)} C_{w}^{j}$$

Output:

$$C = \bigcup_{v \in V(H)} C_v^1$$

Main Idea: For each bag $\beta(t)$, $t \in V(T)$ and partial homomorphism $h: \beta(t) \to V(H)$: C_h^t represents "subtree query" rooted at t and extending h.

Theorem [Olteanu, Závodný 2015]

For every G and arbitrarily large H there is a deterministic $\{\cup, \times\}$ -circuit representing Hom(G, H) of size $O(\|H\|^{tw(G)+1})$.^a

^a In fact, upper bound is stated in terms of the smaller fractional hypertree width (fhtw) – but for graphs G we have fhtw(G) \approx tw(G).

Theorem [Olteanu, Závodný 2015]

For every *G* and arbitrarily large *H* there is a deterministic $\{\cup, \times\}$ -circuit representing Hom(*G*, *H*) of size $O(||H||^{tw(G)+1})$.^{*a*}

^a In fact, upper bound is stated in terms of the smaller fractional hypertree width (fhtw) – but for graphs G we have fhtw(G) \approx tw(G).

Theorem [Olteanu, Závodný 2015]

For every *G* and arbitrarily large *H* there is a deterministic $\{\cup, \times\}$ -circuit representing Hom(G, H) of size $O(||H||^{tw(G)+1})$.^{*a*}

 a^{a} In fact, upper bound is stated in terms of the smaller fractional hypertree width (fhtw) – but for graphs G we have fhtw(G) \approx tw(G).

Theorem [B., Vinall-Smeeth 2025]

For every graph G there are arbitrarily large H such that any $\{\cup, \times\}$ -circuit representing Hom(G, H) has size

 $\Omega(\|H\|^{\mathsf{tw}(G)/20}).$

Theorem [Olteanu, Závodný 2015]

For every *G* and arbitrarily large *H* there is a deterministic $\{\cup, \times\}$ -circuit representing Hom(G, H) of size $O(||H||^{tw(G)+1})$.^{*a*}

 a^{a} In fact, upper bound is stated in terms of the smaller fractional hypertree width (fhtw) – but for graphs G we have fhtw(G) \approx tw(G).

Theorem [B., Vinall-Smeeth 2025]

For every graph G there are arbitrarily large H such that any $\{\cup, \times\}$ -circuit representing Hom(G, H) has size

 $\Omega(\|H\|^{\mathsf{tw}(G)/20}).$

Does not matter if union is disjoint in the worst-case.

Lower bound argument (1/3)

Lemma [B., Vinall-Smeeth 2023]

For any $k \in \mathbb{N}$ there are arbitrary large graphs H with m edges such that any $\{\cup, \times\}$ -circuit representing all k-cliques has size $\Omega(m^{k/2}/\log^{3k-2}(m))$.

• Flat representation has size $O(\#k\text{-Cliques in }H) = O(m^{k/2})$.

Lower bound argument (1/3)

Lemma [B., Vinall-Smeeth 2023]

For any $k \in \mathbb{N}$ there are arbitrary large graphs H with m edges such that any $\{\cup, \times\}$ -circuit representing all k-cliques has size $\Omega(m^{k/2}/\log^{3k-2}(m))$.

• Flat representation has size $O(\#k\text{-Cliques in } H) = O(m^{k/2})$.

For a lower bound we need instances with:

- many k-cliques
- no large complete bipartite subgraphs (= combinatorial rectangles)

Lower bound argument (1/3)

Lemma [B., Vinall-Smeeth 2023]

For any $k \in \mathbb{N}$ there are arbitrary large graphs H with m edges such that any $\{\cup, \times\}$ -circuit representing all k-cliques has size $\Omega(m^{k/2}/\log^{3k-2}(m))$.

• Flat representation has size $O(\#k\text{-Cliques in } H) = O(m^{k/2})$.

For a lower bound we need instances with:

- many k-cliques
- no large complete bipartite subgraphs (= combinatorial rectangles)

Lower bound argument (1/3)

Lemma [B., Vinall-Smeeth 2023]

For any $k \in \mathbb{N}$ there are arbitrary large graphs H with m edges such that any $\{\cup, \times\}$ -circuit representing all k-cliques has size $\Omega(m^{k/2}/\log^{3k-2}(m))$.

• Flat representation has size $O(\#k\text{-Cliques in }H) = O(m^{k/2})$.

For a lower bound we need instances with:

- many k-cliques
- no large complete bipartite subgraphs (= combinatorial rectangles)

We pick a random graph on *n* vertices (edge probability $\frac{1}{2}$), w.h.p. it has $\Omega(m^{k/2})$ k-cliques and no $K_{a,a}$ subgraph for $a \ge 3 \log n$.

• A gate in the circuit is small if projection on each variable of computed relation is < 3 log n.

Lower bound argument (1/3)

Lemma [B., Vinall-Smeeth 2023]

For any $k \in \mathbb{N}$ there are arbitrary large graphs H with m edges such that any $\{\cup, \times\}$ -circuit representing all k-cliques has size $\Omega(m^{k/2}/\log^{3k-2}(m))$.

• Flat representation has size $O(\#k\text{-Cliques in } H) = O(m^{k/2})$.

For a lower bound we need instances with:

- many k-cliques
- no large complete bipartite subgraphs (= combinatorial rectangles)

- A gate in the circuit is small if projection on each variable of computed relation is < 3 log n.
- Main insight: A x-gate has at most one child that is not small.

Lower bound argument (1/3)

Lemma [B., Vinall-Smeeth 2023]

For any $k \in \mathbb{N}$ there are arbitrary large graphs H with m edges such that any $\{\cup, \times\}$ -circuit representing all k-cliques has size $\Omega(m^{k/2}/\log^{3k-2}(m))$.

• Flat representation has size $O(\#k\text{-Cliques in }H) = O(m^{k/2})$.

For a lower bound we need instances with:

- many k-cliques
- no large complete bipartite subgraphs (= combinatorial rectangles)

- A gate in the circuit is small if projection on each variable of computed relation is $< 3 \log n$.
- Main insight: A ×-gate has at most one child that is not small.
 ⇒ It can only represent n log^c n mappings.

Lower bound argument (1/3)

Lemma [B., Vinall-Smeeth 2023]

For any $k \in \mathbb{N}$ there are arbitrary large graphs H with m edges such that any $\{\cup, \times\}$ -circuit representing all k-cliques has size $\Omega(m^{k/2}/\log^{3k-2}(m))$.

• Flat representation has size $O(\#k\text{-Cliques in }H) = O(m^{k/2})$.

For a lower bound we need instances with:

- many k-cliques
- no large complete bipartite subgraphs (= combinatorial rectangles)

- A gate in the circuit is small if projection on each variable of computed relation is $< 3 \log n$.
- Main insight: A x-gate has at most one child that is not small.
 - \Rightarrow It can only represent $n \log^c n$ mappings.
 - \Rightarrow There are many such gates.

Lower bound argument (2/3)

For each $W \subseteq V(G)$ a *W*-balanced separator disconnects *G* so that each connected component has at most $\frac{1}{2}|W|$ elements from *W*.

Lower bound argument (2/3)

For each $W \subseteq V(G)$ a *W*-balanced separator disconnects *G* so that each connected component has at most $\frac{1}{2}|W|$ elements from *W*.

Lower bound argument (2/3)

For each $W \subseteq V(G)$ a *W*-balanced separator disconnects *G* so that each connected component has at most $\frac{1}{2}|W|$ elements from *W*.

Lower bound argument (2/3)

For each $W \subseteq V(G)$ a *W*-balanced separator disconnects *G* so that each connected component has at most $\frac{1}{2}|W|$ elements from *W*.

Lower bound argument (2/3)

For each $W \subseteq V(G)$ a *W*-balanced separator disconnects *G* so that each connected component has at most $\frac{1}{2}|W|$ elements from *W*.

Lower bound argument (2/3)

For each $W \subseteq V(G)$ a *W*-balanced separator disconnects *G* so that each connected component has at most $\frac{1}{2}|W|$ elements from *W*.

For every W there is a W-balanced separator of size tw(G) + 1:

Conversely, large treewidth \implies ex. large highly connected set:

Lemma

If tw(G) > 3k, then there is an $W \subseteq V(G)$ of size 2k + 1 that has no W-balanced separator of size k.

• Each $\{\cup, \times\}$ -circuit contains a gate g that defines a balanced partition $(X, Y) = (\operatorname{var}(g), V \setminus \operatorname{var}(g))$ of W (where $\frac{1}{3}|W| \le |X \cap W|, |Y \cap W| \le \frac{2}{3}|W|$).

• Each $\{\cup, \times\}$ -circuit contains a gate g that defines a balanced partition $(X, Y) = (\operatorname{var}(g), V \setminus \operatorname{var}(g))$ of W (where $\frac{1}{3}|W| \le |X \cap W|, |Y \cap W| \le \frac{2}{3}|W|$).

• Each $\{\cup, \times\}$ -circuit contains a gate g that defines a balanced partition $(X, Y) = (\operatorname{var}(g), V \setminus \operatorname{var}(g))$ of W (where $\frac{1}{3}|W| \le |X \cap W|, |Y \cap W| \le \frac{2}{3}|W|$).

• There has to be a large matching (size $\geq \frac{k}{3}$) crossing the partition (X, Y) (otherwise we can find a small balanced separator of W).

• Each $\{\cup, \times\}$ -circuit contains a gate g that defines a balanced partition $(X, Y) = (\operatorname{var}(g), V \setminus \operatorname{var}(g))$ of W (where $\frac{1}{3}|W| \le |X \cap W|, |Y \cap W| \le \frac{2}{3}|W|$).

- There has to be a large matching (size $\geq \frac{k}{3}$) crossing the partition (X, Y) (otherwise we can find a small balanced separator of W).
- Projection to at least one endpoint of each matching edge has to be small $(< 3 \log n)$.

Each {∪, ×}-circuit contains a gate g that defines a balanced partition
 (X,Y) = (var(g), V \ var(g)) of W (where ¹/₃|W| ≤ |X ∩ W|, |Y ∩ W| ≤ ²/₃|W|).

- There has to be a large matching (size $\geq \frac{k}{3}$) crossing the partition (X, Y) (otherwise we can find a small balanced separator of W).
- Projection to at least one endpoint of each matching edge has to be small $(< 3 \log n)$.
- g responsible for few homomorphisms \Rightarrow there are many such g.

For which queries can we always get small circuits? **PART II:** Arbitrary relational structures

Acyclic Join Queries

Relations of large arity: treewidth not the right measure

 $R(x_1, x_2, x_3, x_4, x_5) \land S(x_4, x_5, x_6, x_7) \land T(x_7, x_8, x_9)$

Acyclic Join Queries

Relations of large arity: treewidth not the right measure

 $R(x_1, x_2, x_3, x_4, x_5) \land S(x_4, x_5, x_6, x_7) \land T(x_7, x_8, x_9)$

- Acyclic query := has join-tree = tree decomp. where every bag corresponds to an atom.
- "projections on a bag" bounded by single relations in H

Acyclic Join Queries

Relations of large arity: treewidth not the right measure

 $R(x_1, x_2, x_3, x_4, x_5) \land S(x_4, x_5, x_6, x_7) \land T(x_7, x_8, x_9)$

- Acyclic query := has join-tree = tree decomp. where every bag corresponds to an atom.
- "projections on a bag" bounded by single relations in ${\cal H}$
- get deterministic $\{\cup, \times\}$ -circuits of size O(||H||)

Conditioned on the exponential time hypothesis, submodular width (subw) of G characterises FPT-solvability of the decision problem [Marx 2013] (again \mathbb{R} Dan's talk).

Conditioned on the exponential time hypothesis, submodular width (subw) of G characterises FPT-solvability of the decision problem [Marx 2013] (again \mathbb{R} Dan's talk).

Lemma [Marx 2013] [B., Schweikardt 2019]

If subw(G) $\leq w$, then there are $\ell = f(G)$ pairs (G_i, H_i) , where G_i is acyclic and $||H_i|| \leq ||H||^{O(w)}$ such that

 $\operatorname{Hom}(G, H) = \operatorname{Hom}(G_1, H_1) \cup \cdots \cup \operatorname{Hom}(G_{\ell}, H_{\ell}).$

Conditioned on the exponential time hypothesis, submodular width (subw) of G characterises FPT-solvability of the decision problem [Marx 2013] (again \mathbb{R} Dan's talk).

Lemma [Marx 2013] [B., Schweikardt 2019]

If subw(G) $\leq w$, then there are $\ell = f(G)$ pairs (G_i, H_i) , where G_i is acyclic and $||H_i|| \leq ||H||^{O(w)}$ such that

 $\operatorname{Hom}(G, H) = \operatorname{Hom}(G_1, H_1) \cup \cdots \cup \operatorname{Hom}(G_{\ell}, H_{\ell}).$

• Get $\{\cup, \times\}$ -circuits of size $f(G) ||H||^{O(\operatorname{subw}(G))}$.

Conditioned on the exponential time hypothesis, submodular width (subw) of G characterises FPT-solvability of the decision problem [Marx 2013] (again \mathbb{R} Dan's talk).

Lemma [Marx 2013] [B., Schweikardt 2019]

If subw(G) $\leq w$, then there are $\ell = f(G)$ pairs (G_i, H_i) , where G_i is acyclic and $||H_i|| \leq ||H||^{O(w)}$ such that

 $\operatorname{Hom}(G, H) = \operatorname{Hom}(G_1, H_1) \cup \cdots \cup \operatorname{Hom}(G_{\ell}, H_{\ell}).$

- Get $\{\cup, \times\}$ -circuits of size $f(G) ||H||^{O(\operatorname{subw}(G))}$.
- Union at top not disjoint \Rightarrow cannot be used for counting.

Conditioned on the exponential time hypothesis, submodular width (subw) of G characterises FPT-solvability of the decision problem [Marx 2013] (again \mathbb{R} Dan's talk).

Lemma [Marx 2013] [B., Schweikardt 2019]

If subw(G) $\leq w$, then there are $\ell = f(G)$ pairs (G_i, H_i) , where G_i is acyclic and $||H_i|| \leq ||H||^{O(w)}$ such that

 $\operatorname{Hom}(G, H) = \operatorname{Hom}(G_1, H_1) \cup \cdots \cup \operatorname{Hom}(G_{\ell}, H_{\ell}).$

- Get $\{\cup, \times\}$ -circuits of size $f(G) ||H||^{O(\operatorname{subw}(G))}$.
- Union at top not disjoint \Rightarrow cannot be used for counting.
- Can be used for enumeration with $f(G) ||H||^{O(subw(G))}$ preprocessing and f(G) delay. [B., Schweikardt 2019]

Theorem [B., Vinall-Smeeth 2025]

For every G there are arbitrarily large H of size ||H|| such that any $\{\cup, \times\}$ -circuit representing all homomorphisms from G to H has size

 $\Omega(\|H\|^{\varepsilon \cdot \operatorname{subw}(G)^{1/4}}).$

Theorem [B., Vinall-Smeeth 2025]

For every G there are arbitrarily large H of size ||H|| such that any $\{\cup, \times\}$ -circuit representing all homomorphisms from G to H has size

 $\Omega(\|H\|^{\varepsilon \cdot \operatorname{subw}(G)^{1/4}}).$

Similar proof strategy as before:

- Use a "highly connected" set W (more complicated for subw than for tw). [Marx 2013]
- Define a worst-case instance with many homomorphisms.
- Put in randomness to destroy all large rectangles ("bipartite subgraphs"), while keeping many homomorphisms intact.
- Lower bound for rectangle cover again implies lower bound on circuit size.

Main results: bounds on the size of $\{\cup, \times\}$ -circuits for homomorphisms from fixed G to large H:

• For graphs, digraphs: $O(||H||^{tw(G)+1})$ and $\Omega(||H||^{tw(G)/20})$

Main results: bounds on the size of $\{\cup, \times\}$ -circuits for homomorphisms from fixed G to large H:

- For graphs, digraphs: $O(||H||^{\operatorname{tw}(G)+1})$ and $\Omega(||H||^{\operatorname{tw}(G)/20})$
- In general: $||H||^{O(\operatorname{subw}(G))}$ and $||H||^{\Omega(\operatorname{subw}(|H|)^{1/4})}$

Main results: bounds on the size of $\{\cup, \times\}$ -circuits for homomorphisms from fixed G to large H:

- For graphs, digraphs: $O(||H||^{\operatorname{tw}(G)+1})$ and $\Omega(||H||^{\operatorname{tw}(G)/20})$
- In general: $||H||^{O(\operatorname{subw}(G))}$ and $||H||^{\Omega(\operatorname{subw}(|H|)^{1/4})}$

Open: Characterisation for deterministic circuits in the general case. Main obstacles:

- Need to understand disjoint multi-partition rectangle covers better.
- The parameterized counting complexity of join queries is also open.

Main results: bounds on the size of $\{\cup, \times\}$ -circuits for homomorphisms from fixed G to large H:

- For graphs, digraphs: $O(||H||^{\operatorname{tw}(G)+1})$ and $\Omega(||H||^{\operatorname{tw}(G)/20})$
- In general: $||H||^{O(\operatorname{subw}(G))}$ and $||H||^{\Omega(\operatorname{subw}(|H|)^{1/4})}$

Open: Characterisation for deterministic circuits in the general case. Main obstacles:

- Need to understand disjoint multi-partition rectangle covers better.
- The parameterized counting complexity of join queries is also open.

Related CSP result for the other side [B., Mengel, Wilhelm 2024]:

If ${\mathcal H}$ is a class of right-hand-side structures (databases), then

Hom(*G*, *H*) has polynomial-size $\{\cup, \times\}$ -circuits for all *G* and $H \in \mathcal{H}$

 $\ensuremath{\mathcal{H}}$ is strongly blockwise decomposable.