
The Complexity of
the Homomorphism Reconstructibility Problem
Finite and Algorithmic Model Theory 2025

Nina Runde
(Joint work with Jan Böker, Louis Härtel, Tim Seppelt and Christoph Standke)

1

Example: Graph Homomorphism Counts

F1

F2

F3

G
hom(F1, G) = 24

hom(F2, G) = 90

hom(F3, G) = 378

2

Example: Graph Homomorphism Counts

F1

F2

F3

G
hom(F1, G) = 24

hom(F2, G) = 90

hom(F3, G) = 378

2

Example: Graph Homomorphism Counts

F1

F2

F3

G

hom(F1, G) = 24

hom(F2, G) = 90

hom(F3, G) = 378

2

Example: Graph Homomorphism Counts

F1

F2

F3

G
hom(F1, G) = 24

hom(F2, G) = 90

hom(F3, G) = 378

2

Example: Graph Homomorphism Counts REVERSED

F1

F2

F3

c1 = 24

c2 = 90

c3 = 378

3

Example: Graph Homomorphism Counts REVERSED

F1

F2

F3

c1 = 24

c2 = 90

c3 = 378

3

Example: Graph Homomorphism Counts REVERSED

F1

F2

F3

c1 = 24

c2 = 90

c3 = 378

3

Example: Graph Homomorphism Counts REVERSED

F1

F2

F3

c1 = 24

c2 = 90

c3 = 378

hom(F1, G) = c1

hom(F2, G) = c2

hom(F3, G) = c3

3

Example: Graph Homomorphism Counts REVERSED

F1

F2

F3

c1 = 24

c2 = 90

c3 = 378

G

3

Example: Graph Homomorphism Counts REVERSED

F1

F2

F3

c1 = 23

c2 = 90

c3 = 378

G

3

Example: Graph Homomorphism Counts REVERSED

F1

F2

F3

c1 = 23

c2 = 90

c3 = 378

G

×
3

Second Example

hom(, G) = 9 hom(, G) = y · 2 hom(, G) = x · 6

Razborov bound

Kruskal–Katona bound

4

Second Example

hom(, G) = 9

hom(, G) = y · 2 hom(, G) = x · 6

Razborov bound

Kruskal–Katona bound

4

Second Example

hom(, G) = 9 hom(, G) = y · 2

hom(, G) = x · 6

Razborov bound

Kruskal–Katona bound

4

Second Example

hom(, G) = 9 hom(, G) = y · 2 hom(, G) = x · 6

Razborov bound

Kruskal–Katona bound

4

Second Example

hom(, G) = 9 hom(, G) = y · 2 hom(, G) = x · 6

0 10 20 30 40 50 60 70 80
triangles

0

10

20

30

ed

ge
s

Razborov bound

Kruskal–Katona bound

4

Second Example

hom(, G) = 9 hom(, G) = y · 2 hom(, G) = x · 6

0 10 20 30 40 50 60 70 80
triangles

0

10

20

30

ed

ge
s

Razborov bound

Kruskal–Katona bound

4

Second Example

hom(, G) = 9 hom(, G) = y · 2 hom(, G) = x · 6

0 10 20 30 40 50 60 70 80
triangles

0

10

20

30

ed

ge
s

Razborov bound

Kruskal–Katona bound

4

Problem Definition

HomRec(F)
Input: (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G such that

hom(Fi , G) = ci for all i ∈ [m]?

BHomRec(F)
Input: N, (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G

with |V (G)| ≤ N such that
hom(Fi , G) = ci for all i ∈ [m]?

Instance size:∑
i∈[m] |Fi | + log(ci)

Example:
hom(, G) = c1

size n = log(c1) + 1

Instance size:
N + ∑

i∈[m] |Fi | + log(ci)

5

Problem Definition

HomRec(F)

Input: (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G such that

hom(Fi , G) = ci for all i ∈ [m]?

BHomRec(F)
Input: N, (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G

with |V (G)| ≤ N such that
hom(Fi , G) = ci for all i ∈ [m]?

Instance size:∑
i∈[m] |Fi | + log(ci)

Example:
hom(, G) = c1

size n = log(c1) + 1

Instance size:
N + ∑

i∈[m] |Fi | + log(ci)

5

Problem Definition

HomRec(F)
Input: (F1, c1), ..., (Fm, cm) ∈ F × N

Question: Is there a graph G such that
hom(Fi , G) = ci for all i ∈ [m]?

BHomRec(F)
Input: N, (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G

with |V (G)| ≤ N such that
hom(Fi , G) = ci for all i ∈ [m]?

Instance size:∑
i∈[m] |Fi | + log(ci)

Example:
hom(, G) = c1

size n = log(c1) + 1

Instance size:
N + ∑

i∈[m] |Fi | + log(ci)

5

Problem Definition

HomRec(F)
Input: (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G such that

hom(Fi , G) = ci for all i ∈ [m]?

BHomRec(F)
Input: N, (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G

with |V (G)| ≤ N such that
hom(Fi , G) = ci for all i ∈ [m]?

Instance size:∑
i∈[m] |Fi | + log(ci)

Example:
hom(, G) = c1

size n = log(c1) + 1

Instance size:
N + ∑

i∈[m] |Fi | + log(ci)

5

Problem Definition

HomRec(F)
Input: (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G such that

hom(Fi , G) = ci for all i ∈ [m]?

BHomRec(F)
Input: N, (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G

with |V (G)| ≤ N such that
hom(Fi , G) = ci for all i ∈ [m]?

Instance size:∑
i∈[m] |Fi | + log(ci)

Example:
hom(, G) = c1

size n = log(c1) + 1

Instance size:
N + ∑

i∈[m] |Fi | + log(ci)

5

Problem Definition

HomRec(F)
Input: (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G such that

hom(Fi , G) = ci for all i ∈ [m]?

BHomRec(F)
Input: N, (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G

with |V (G)| ≤ N such that
hom(Fi , G) = ci for all i ∈ [m]?

Instance size:∑
i∈[m] |Fi | + log(ci)

Example:
hom(, G) = c1

size n = log(c1) + 1

Instance size:
N + ∑

i∈[m] |Fi | + log(ci)

5

Problem Definition

HomRec(F)
Input: (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G such that

hom(Fi , G) = ci for all i ∈ [m]?

BHomRec(F)
Input: N, (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G

with |V (G)| ≤ N such that
hom(Fi , G) = ci for all i ∈ [m]?

Instance size:∑
i∈[m] |Fi | + log(ci)

Example:
hom(, G) = c1

size n = log(c1) + 1

Instance size:
N + ∑

i∈[m] |Fi | + log(ci)

5

Problem Definition

HomRec(F)
Input: (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G such that

hom(Fi , G) = ci for all i ∈ [m]?

BHomRec(F)
Input: N, (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G

with |V (G)| ≤ N such that
hom(Fi , G) = ci for all i ∈ [m]?

Instance size:∑
i∈[m] |Fi | + log(ci)

Example:
hom(, G) = c1

size n = log(c1) + 1

Instance size:
N + ∑

i∈[m] |Fi | + log(ci)

5

Problem Definition

HomRec(F)
Input: (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G such that

hom(Fi , G) = ci for all i ∈ [m]?

BHomRec(F)
Input: N, (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G

with |V (G)| ≤ N such that
hom(Fi , G) = ci for all i ∈ [m]?

Instance size:∑
i∈[m] |Fi | + log(ci)

Example:
hom(, G) = c1

size n = log(c1) + 1

Instance size:
N + ∑

i∈[m] |Fi | + log(ci)

5

Problem Definition

HomRec(F)
Input: (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G such that

hom(Fi , G) = ci for all i ∈ [m]?

BHomRec(F)
Input: N, (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G

with |V (G)| ≤ N such that
hom(Fi , G) = ci for all i ∈ [m]?

Instance size:∑
i∈[m] |Fi | + log(ci)

Example:
hom(, G) = c1

size n = log(c1) + 1

Instance size:
N + ∑

i∈[m] |Fi | + log(ci)

5

Easy Reduction

Graph H is not 3-colorable ⇐⇒ hom(H,) = 0

non-3-col HomRec

Input graph H
F1 = H c1 = 0
F2 = c2 = 3
F3 = c3 = 6

6

Easy Reduction

Graph H is 3-colorable ⇐⇒ hom(H,) > 0

non-3-col HomRec

Input graph H
F1 = H c1 = 0
F2 = c2 = 3
F3 = c3 = 6

6

Easy Reduction

Graph H is not 3-colorable ⇐⇒ hom(H,) = 0

non-3-col HomRec

Input graph H
F1 = H c1 = 0
F2 = c2 = 3
F3 = c3 = 6

6

Easy Reduction

Graph H is not 3-colorable ⇐⇒ hom(H,) = 0

non-3-col HomRec

Input graph H
F1 = H c1 = 0
F2 = c2 = 3
F3 = c3 = 6

6

Easy Reduction

Graph H is not 3-colorable ⇐⇒ hom(H,) = 0

non-3-col HomRec

Input graph H

F1 = H c1 = 0
F2 = c2 = 3
F3 = c3 = 6

6

Easy Reduction

Graph H is not 3-colorable ⇐⇒ hom(H,) = 0

non-3-col HomRec

Input graph H
F1 = H c1 = 0

F2 = c2 = 3
F3 = c3 = 6

6

Easy Reduction

Graph H is not 3-colorable ⇐⇒ hom(H,) = 0

non-3-col HomRec

Input graph H
F1 = H c1 = 0
F2 = c2 = 3

F3 = c3 = 6

6

Easy Reduction

Graph H is not 3-colorable ⇐⇒ hom(H,) = 0

non-3-col HomRec

Input graph H
F1 = H c1 = 0
F2 = c2 = 3
F3 = c3 = 6

6

So how hard is it the problem actually?

Graph class F HomRec(F) BHomRec(F)

all graphs NP#P-hard NP#P-complete
bounded tree-width NP-hard NP-hard
finite set of graphs NP-hard not NP-hard (unless P= NP)

coNP ⊆ PH ⊆ P#P ⊆ NP#P(= NPPP) ⊆ PSPACE ⊆ NEXP

7

So how hard is it the problem actually?

Graph class F HomRec(F) BHomRec(F)

all graphs NP#P-hard NP#P-complete
bounded tree-width NP-hard NP-hard
finite set of graphs NP-hard not NP-hard (unless P= NP)

coNP ⊆ PH ⊆ P#P ⊆ NP#P(= NPPP) ⊆ PSPACE ⊆ NEXP

7

So how hard is it the problem actually?

Graph class F HomRec(F) BHomRec(F)
all graphs

NP#P-hard NP#P-complete
bounded tree-width NP-hard NP-hard
finite set of graphs NP-hard not NP-hard (unless P= NP)

coNP ⊆ PH ⊆ P#P ⊆ NP#P(= NPPP) ⊆ PSPACE ⊆ NEXP

7

So how hard is it the problem actually?

Graph class F HomRec(F) BHomRec(F)
all graphs NP#P-hard NP#P-complete

bounded tree-width NP-hard NP-hard
finite set of graphs NP-hard not NP-hard (unless P= NP)

coNP ⊆ PH ⊆ P#P ⊆ NP#P(= NPPP) ⊆ PSPACE ⊆ NEXP

7

So how hard is it the problem actually?

Graph class F HomRec(F) BHomRec(F)
all graphs NP#P-hard NP#P-complete

bounded tree-width NP-hard NP-hard
finite set of graphs NP-hard not NP-hard (unless P= NP)

coNP ⊆ PH ⊆ P#P ⊆ NP#P(= NPPP) ⊆ PSPACE ⊆ NEXP

7

So how hard is it the problem actually?

Graph class F HomRec(F) BHomRec(F)
all graphs NP#P-hard NP#P-complete
bounded tree-width

NP-hard NP-hard
finite set of graphs NP-hard not NP-hard (unless P= NP)

coNP ⊆ PH ⊆ P#P ⊆ NP#P(= NPPP) ⊆ PSPACE ⊆ NEXP

7

So how hard is it the problem actually?

Graph class F HomRec(F) BHomRec(F)
all graphs NP#P-hard NP#P-complete
bounded tree-width NP-hard NP-hard

finite set of graphs NP-hard not NP-hard (unless P= NP)

coNP ⊆ PH ⊆ P#P ⊆ NP#P(= NPPP) ⊆ PSPACE ⊆ NEXP

7

So how hard is it the problem actually?

Graph class F HomRec(F) BHomRec(F)
all graphs NP#P-hard NP#P-complete
bounded tree-width NP-hard NP-hard
finite set of graphs

NP-hard not NP-hard (unless P= NP)

coNP ⊆ PH ⊆ P#P ⊆ NP#P(= NPPP) ⊆ PSPACE ⊆ NEXP

7

So how hard is it the problem actually?

Graph class F HomRec(F) BHomRec(F)
all graphs NP#P-hard NP#P-complete
bounded tree-width NP-hard NP-hard
finite set of graphs NP-hard

not NP-hard (unless P= NP)

coNP ⊆ PH ⊆ P#P ⊆ NP#P(= NPPP) ⊆ PSPACE ⊆ NEXP

7

So how hard is it the problem actually?

Graph class F HomRec(F) BHomRec(F)
all graphs NP#P-hard NP#P-complete
bounded tree-width NP-hard NP-hard
finite set of graphs NP-hard not NP-hard (unless P= NP)

coNP ⊆ PH ⊆ P#P ⊆ NP#P(= NPPP) ⊆ PSPACE ⊆ NEXP

7

A bit less easy Reduction

QPoly
Input:
a, b, c ∈ N
Question:
Are there x , y ∈ N
such that
ax2 + by = c

hom
(R)

= 2

hom
(A R)

= a + 1

hom
(B R)

= b + 1

hom
(M1 R)

= 1

hom
(M2 R)

= 1

hom
(M2 R M1)

= 0

hom
(M1 R Y)

= 1

hom
(M2 R X)

= 1

hom
(R

B

Y X

X
A

)
= c

8

A bit less easy Reduction

QPoly
Input:
a, b, c ∈ N
Question:
Are there x , y ∈ N
such that
ax2 + by = c

hom
(R)

= 2

hom
(A R)

= a + 1

hom
(B R)

= b + 1

hom
(M1 R)

= 1

hom
(M2 R)

= 1

hom
(M2 R M1)

= 0

hom
(M1 R Y)

= 1

hom
(M2 R X)

= 1

hom
(R

B

Y X

X
A

)
= c

8

Tractability Results

• FPT algorithm (for computable f , running time of f (∑ |Fi |)· poly(n))
• One constraint tuple (F1, c1) ✓

• Multiple, connected graphs of the same size, but only if we look at subgraph counts
instead of homomorphism counts ✓

• That’s it.

9

Tractability Results

• FPT algorithm

(for computable f , running time of f (∑ |Fi |)· poly(n))
• One constraint tuple (F1, c1) ✓

• Multiple, connected graphs of the same size, but only if we look at subgraph counts
instead of homomorphism counts ✓

• That’s it.

9

Tractability Results

• FPT algorithm (for computable f , running time of f (∑ |Fi |)· poly(n))

• One constraint tuple (F1, c1) ✓

• Multiple, connected graphs of the same size, but only if we look at subgraph counts
instead of homomorphism counts ✓

• That’s it.

9

Tractability Results

• FPT algorithm (for computable f , running time of f (∑ |Fi |)· poly(n))
• One constraint tuple (F1, c1)

✓

• Multiple, connected graphs of the same size, but only if we look at subgraph counts
instead of homomorphism counts ✓

• That’s it.

9

Tractability Results

• FPT algorithm (for computable f , running time of f (∑ |Fi |)· poly(n))
• One constraint tuple (F1, c1) ✓

• Multiple, connected graphs of the same size, but only if we look at subgraph counts
instead of homomorphism counts ✓

• That’s it.

9

Tractability Results

• FPT algorithm (for computable f , running time of f (∑ |Fi |)· poly(n))
• One constraint tuple (F1, c1) ✓

• Multiple, connected graphs of the same size

, but only if we look at subgraph counts
instead of homomorphism counts ✓

• That’s it.

9

Tractability Results

• FPT algorithm (for computable f , running time of f (∑ |Fi |)· poly(n))
• One constraint tuple (F1, c1) ✓

• Multiple, connected graphs of the same size, but only if we look at subgraph counts
instead of homomorphism counts

✓

• That’s it.

9

Tractability Results

• FPT algorithm (for computable f , running time of f (∑ |Fi |)· poly(n))
• One constraint tuple (F1, c1) ✓

• Multiple, connected graphs of the same size, but only if we look at subgraph counts
instead of homomorphism counts ✓

• That’s it.

9

Tractability Results

• FPT algorithm (for computable f , running time of f (∑ |Fi |)· poly(n))
• One constraint tuple (F1, c1) ✓

• Multiple, connected graphs of the same size, but only if we look at subgraph counts
instead of homomorphism counts ✓

• That’s it.

9

Conclusion

It’s a really hard problem (at least NP#P and still
NP-hard with massively restricted constraint graph
classes).

Open questions!

• How hard is the problem exactly? (we only know it’s in NEXP)
• Other tractability results? What about two constraints? Approximations?
• What happens if we have homomorphism density constraints instead of counts?

10

Conclusion

It’s a really hard problem (at least NP#P and still
NP-hard with massively restricted constraint graph
classes).

Open questions!

• How hard is the problem exactly? (we only know it’s in NEXP)
• Other tractability results? What about two constraints? Approximations?
• What happens if we have homomorphism density constraints instead of counts?

10

Conclusion

It’s a really hard problem

(at least NP#P and still
NP-hard with massively restricted constraint graph
classes).

Open questions!

• How hard is the problem exactly? (we only know it’s in NEXP)
• Other tractability results? What about two constraints? Approximations?
• What happens if we have homomorphism density constraints instead of counts?

10

Conclusion

It’s a really hard problem (at least NP#P and still
NP-hard with massively restricted constraint graph
classes).

Open questions!

• How hard is the problem exactly? (we only know it’s in NEXP)
• Other tractability results? What about two constraints? Approximations?
• What happens if we have homomorphism density constraints instead of counts?

10

Conclusion

It’s a really hard problem (at least NP#P and still
NP-hard with massively restricted constraint graph
classes).

Open questions!

• How hard is the problem exactly? (we only know it’s in NEXP)
• Other tractability results? What about two constraints? Approximations?
• What happens if we have homomorphism density constraints instead of counts?

10

Conclusion

It’s a really hard problem (at least NP#P and still
NP-hard with massively restricted constraint graph
classes).

Open questions!

• How hard is the problem exactly? (we only know it’s in NEXP)

• Other tractability results? What about two constraints? Approximations?
• What happens if we have homomorphism density constraints instead of counts?

10

Conclusion

It’s a really hard problem (at least NP#P and still
NP-hard with massively restricted constraint graph
classes).

Open questions!

• How hard is the problem exactly? (we only know it’s in NEXP)
• Other tractability results? What about two constraints? Approximations?

• What happens if we have homomorphism density constraints instead of counts?

10

Conclusion

It’s a really hard problem (at least NP#P and still
NP-hard with massively restricted constraint graph
classes).

Open questions!

• How hard is the problem exactly? (we only know it’s in NEXP)
• Other tractability results? What about two constraints? Approximations?
• What happens if we have homomorphism density constraints instead of counts?

10

