
The Complexity of
the Homomorphism Reconstructibility Problem
Finite and Algorithmic Model Theory 2025

Nina Runde
(Joint work with Jan Böker, Louis Härtel, Tim Seppelt and Christoph Standke)

1



Example: Graph Homomorphism Counts

F1

F2

F3

G
hom(F1, G) = 24

hom(F2, G) = 90

hom(F3, G) = 378

2



Example: Graph Homomorphism Counts

F1

F2

F3

G
hom(F1, G) = 24

hom(F2, G) = 90

hom(F3, G) = 378

2



Example: Graph Homomorphism Counts

F1

F2

F3

G

hom(F1, G) = 24

hom(F2, G) = 90

hom(F3, G) = 378

2



Example: Graph Homomorphism Counts

F1

F2

F3

G
hom(F1, G) = 24

hom(F2, G) = 90

hom(F3, G) = 378

2
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Second Example
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Problem Definition

HomRec(F)
Input: (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G such that

hom(Fi , G) = ci for all i ∈ [m]?

BHomRec(F)
Input: N, (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G

with |V (G)| ≤ N such that
hom(Fi , G) = ci for all i ∈ [m]?

Instance size:∑
i∈[m] |Fi | + log(ci)

Example:
hom( , G) = c1

size n = log(c1) + 1

Instance size:
N + ∑

i∈[m] |Fi | + log(ci)

5



Problem Definition

HomRec(F)

Input: (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G such that

hom(Fi , G) = ci for all i ∈ [m]?

BHomRec(F)
Input: N, (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G

with |V (G)| ≤ N such that
hom(Fi , G) = ci for all i ∈ [m]?

Instance size:∑
i∈[m] |Fi | + log(ci)

Example:
hom( , G) = c1

size n = log(c1) + 1

Instance size:
N + ∑

i∈[m] |Fi | + log(ci)

5



Problem Definition

HomRec(F)
Input: (F1, c1), ..., (Fm, cm) ∈ F × N

Question: Is there a graph G such that
hom(Fi , G) = ci for all i ∈ [m]?

BHomRec(F)
Input: N, (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G

with |V (G)| ≤ N such that
hom(Fi , G) = ci for all i ∈ [m]?

Instance size:∑
i∈[m] |Fi | + log(ci)

Example:
hom( , G) = c1

size n = log(c1) + 1

Instance size:
N + ∑

i∈[m] |Fi | + log(ci)

5



Problem Definition

HomRec(F)
Input: (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G such that

hom(Fi , G) = ci for all i ∈ [m]?

BHomRec(F)
Input: N, (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G

with |V (G)| ≤ N such that
hom(Fi , G) = ci for all i ∈ [m]?

Instance size:∑
i∈[m] |Fi | + log(ci)

Example:
hom( , G) = c1

size n = log(c1) + 1

Instance size:
N + ∑

i∈[m] |Fi | + log(ci)

5



Problem Definition

HomRec(F)
Input: (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G such that

hom(Fi , G) = ci for all i ∈ [m]?

BHomRec(F)
Input: N, (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G

with |V (G)| ≤ N such that
hom(Fi , G) = ci for all i ∈ [m]?

Instance size:∑
i∈[m] |Fi | + log(ci)

Example:
hom( , G) = c1

size n = log(c1) + 1

Instance size:
N + ∑

i∈[m] |Fi | + log(ci)

5



Problem Definition

HomRec(F)
Input: (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G such that

hom(Fi , G) = ci for all i ∈ [m]?

BHomRec(F)
Input: N, (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G

with |V (G)| ≤ N such that
hom(Fi , G) = ci for all i ∈ [m]?

Instance size:∑
i∈[m] |Fi | + log(ci)

Example:
hom( , G) = c1

size n = log(c1) + 1

Instance size:
N + ∑

i∈[m] |Fi | + log(ci)

5



Problem Definition

HomRec(F)
Input: (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G such that

hom(Fi , G) = ci for all i ∈ [m]?

BHomRec(F)
Input: N, (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G

with |V (G)| ≤ N such that
hom(Fi , G) = ci for all i ∈ [m]?

Instance size:∑
i∈[m] |Fi | + log(ci)

Example:
hom( , G) = c1

size n = log(c1) + 1

Instance size:
N + ∑

i∈[m] |Fi | + log(ci)

5



Problem Definition

HomRec(F)
Input: (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G such that

hom(Fi , G) = ci for all i ∈ [m]?

BHomRec(F)
Input: N, (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G

with |V (G)| ≤ N such that
hom(Fi , G) = ci for all i ∈ [m]?

Instance size:∑
i∈[m] |Fi | + log(ci)

Example:
hom( , G) = c1

size n = log(c1) + 1

Instance size:
N + ∑

i∈[m] |Fi | + log(ci)

5



Problem Definition

HomRec(F)
Input: (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G such that

hom(Fi , G) = ci for all i ∈ [m]?

BHomRec(F)
Input: N, (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G

with |V (G)| ≤ N such that
hom(Fi , G) = ci for all i ∈ [m]?

Instance size:∑
i∈[m] |Fi | + log(ci)

Example:
hom( , G) = c1

size n = log(c1) + 1

Instance size:
N + ∑

i∈[m] |Fi | + log(ci)

5



Problem Definition

HomRec(F)
Input: (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G such that

hom(Fi , G) = ci for all i ∈ [m]?

BHomRec(F)
Input: N, (F1, c1), ..., (Fm, cm) ∈ F × N
Question: Is there a graph G

with |V (G)| ≤ N such that
hom(Fi , G) = ci for all i ∈ [m]?

Instance size:∑
i∈[m] |Fi | + log(ci)

Example:
hom( , G) = c1

size n = log(c1) + 1

Instance size:
N + ∑

i∈[m] |Fi | + log(ci)

5



Easy Reduction

Graph H is not 3-colorable ⇐⇒ hom(H, ) = 0

non-3-col HomRec

Input graph H
F1 = H c1 = 0
F2 = c2 = 3
F3 = c3 = 6
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So how hard is it the problem actually?

Graph class F HomRec(F) BHomRec(F)

all graphs NP#P-hard NP#P-complete
bounded tree-width NP-hard NP-hard
finite set of graphs NP-hard not NP-hard (unless P= NP)

coNP ⊆ PH ⊆ P#P ⊆ NP#P(= NPPP) ⊆ PSPACE ⊆ NEXP
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A bit less easy Reduction

QPoly
Input:
a, b, c ∈ N
Question:
Are there x , y ∈ N
such that
ax2 + by = c

hom
( R )

= 2

hom
( A R )

= a + 1

hom
( B R )

= b + 1

hom
( M1 R )

= 1

hom
( M2 R )

= 1

hom
( M2 R M1 )

= 0

hom
( M1 R Y )

= 1

hom
( M2 R X )

= 1

hom
( R

B

Y X

X
A

)
= c
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Tractability Results

• FPT algorithm (for computable f , running time of f (∑ |Fi |)· poly(n))
• One constraint tuple (F1, c1) ✓

• Multiple, connected graphs of the same size, but only if we look at subgraph counts
instead of homomorphism counts ✓

• That’s it.
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Conclusion

It’s a really hard problem (at least NP#P and still
NP-hard with massively restricted constraint graph
classes).

Open questions!

• How hard is the problem exactly? (we only know it’s in NEXP)
• Other tractability results? What about two constraints? Approximations?
• What happens if we have homomorphism density constraints instead of counts?
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