The Complexity of the Homomorphism Reconstructibility Problem

Finite and Algorithmic Model Theory 2025

Nina Runde

(Joint work with Jan Böker, Louis Härtel, Tim Seppelt and Christoph Standke)

 F_1 F_2 F_3

 F_1 F_2 F_3

$$\hom(\bullet, G) = 9$$

 $\hom(\bullet, G) = 9 \qquad \hom(\bullet - \bullet, G) = y \cdot 2$

$$\hom(\bullet, G) = 9 \qquad \hom(\bullet - \bullet, G) = y \cdot 2 \qquad \hom(\bullet - \bullet, G) = x \cdot 6$$

$$\hom(\bullet, G) = 9 \qquad \hom(\bullet - \bullet, G) = y \cdot 2 \qquad \hom(\bullet - \bullet, G) = x \cdot 6$$

$$\hom(\bullet, G) = 9 \qquad \hom(\bullet - \bullet, G) = y \cdot 2 \qquad \hom(\bullet - \bullet, G) = x \cdot 6$$

$$\hom(\bullet, G) = 9 \qquad \hom(\bullet - \bullet, G) = y \cdot 2 \qquad \hom(\bullet - \bullet, G) = x \cdot 6$$

 $\operatorname{HomRec}(\mathcal{F})$

HOMREC(\mathcal{F}) Input: $(F_1, c_1), ..., (F_m, c_m) \in \mathcal{F} \times \mathbb{N}$

HOMREC(\mathcal{F}) Input: $(F_1, c_1), ..., (F_m, c_m) \in \mathcal{F} \times \mathbb{N}$ Question: Is there a graph G such that hom $(F_i, G) = c_i$ for all $i \in [m]$?

HOMREC(\mathcal{F}) Input: $(F_1, c_1), ..., (F_m, c_m) \in \mathcal{F} \times \mathbb{N}$ Question: Is there a graph G such that hom $(F_i, G) = c_i$ for all $i \in [m]$?

Instance size: $\sum_{i \in [m]} |F_i| + \log(c_i)$

HOMREC(\mathcal{F}) Input: $(F_1, c_1), ..., (F_m, c_m) \in \mathcal{F} \times \mathbb{N}$ Question: Is there a graph G such that hom $(F_i, G) = c_i$ for all $i \in [m]$?

Instance size: $\sum_{i \in [m]} |F_i| + \log(c_i)$

Example: $hom(\bullet, G) = c_1$

HOMREC(\mathcal{F}) Input: $(F_1, c_1), ..., (F_m, c_m) \in \mathcal{F} \times \mathbb{N}$ Question: Is there a graph G such that hom $(F_i, G) = c_i$ for all $i \in [m]$?

Instance size: $\sum_{i \in [m]} |F_i| + \log(c_i)$

Example: hom(•, G) = c_1 size $n = \log(c_1) + 1$

HOMREC(\mathcal{F}) Input: $(F_1, c_1), ..., (F_m, c_m) \in \mathcal{F} \times \mathbb{N}$ Question: Is there a graph G such that hom $(F_i, G) = c_i$ for all $i \in [m]$?

Instance size: $\sum_{i \in [m]} |F_i| + \log(c_i)$

Example: hom(•, G) = c_1 size $n = \log(c_1) + 1$

HOMREC(\mathcal{F}) Input: $(F_1, c_1), ..., (F_m, c_m) \in \mathcal{F} \times \mathbb{N}$ Question: Is there a graph G such that hom $(F_i, G) = c_i$ for all $i \in [m]$?

Instance size: $\sum_{i \in [m]} |F_i| + \log(c_i)$

Example: hom(\bullet , G) = c_1 size $n = \log(c_1) + 1$

HOMREC(\mathcal{F}) Input: $(F_1, c_1), ..., (F_m, c_m) \in \mathcal{F} \times \mathbb{N}$ Question: Is there a graph G such that hom $(F_i, G) = c_i$ for all $i \in [m]$?

BHOMREC(\mathcal{F}) Input: $N, (F_1, c_1), ..., (F_m, c_m) \in \mathcal{F} \times \mathbb{N}$ Question: Is there a graph Gwith $|V(G)| \leq N$ such that hom $(F_i, G) = c_i$ for all $i \in [m]$? Instance size: $\sum_{i \in [m]} |F_i| + \log(c_i)$

Example: hom(•, G) = c_1 size $n = \log(c_1) + 1$

Instance size: $N + \sum_{i \in [m]} |F_i| + \log(c_i)$

Graph *H* is 3-colorable $\iff hom(H, \clubsuit) > 0$

Graph *H* is not 3-colorable $\iff hom(H, \clubsuit) = 0$

Graph *H* is not 3-colorable $\iff hom(H, \clubsuit) = 0$

NON-3-COL HOMREC

Graph *H* is not 3-colorable $\iff hom(H, \clubsuit) = 0$

NON-3-COL HOMREC

Input graph H

Graph *H* is not 3-colorable $\iff hom(H, \clubsuit) = 0$

NON-3-COL HomRec

 $F_1 = H$ $c_1 = 0$

Input graph H

Input graph H $F_1 = H \qquad c_1 = 0$ $F_2 = \bullet \qquad c_2 = 3$ $F_3 = \bullet \circ \circ \qquad c_3 = 6$

Graph class ${\cal F}$	Hom $\operatorname{Rec}(\mathcal{F})$	$\operatorname{BHomRec}(\mathcal{F})$

Graph class ${\cal F}$	Hom $\operatorname{Rec}(\mathcal{F})$	$\operatorname{BHomRec}(\mathcal{F})$
all graphs		

Graph class ${\cal F}$	Hom $\operatorname{Rec}(\mathcal{F})$	$\operatorname{BHomRec}(\mathcal{F})$
all graphs	NP ^{#P} -hard	NP ^{#P} -complete

Graph class ${\cal F}$	Hom $\operatorname{Rec}(\mathcal{F})$	$\operatorname{BHomRec}(\mathcal{F})$
all graphs	$NP^{\#P} ext{-hard}$	NP ^{#P} -complete

 $coNP \subseteq PH \subseteq P^{\#P} \subseteq NP^{\#P} (= NP^{PP}) \subseteq PSPACE \subseteq NEXP$

Graph class ${\cal F}$	Hom $\operatorname{Rec}(\mathcal{F})$	$\operatorname{BHomRec}(\mathcal{F})$
all graphs	NP ^{#P} -hard	NP ^{#P} -complete
bounded tree-width		

Graph class ${\cal F}$	Hom $\operatorname{Rec}(\mathcal{F})$	$\operatorname{BHomRec}(\mathcal{F})$
all graphs	NP ^{#P} -hard	NP ^{#P} -complete
bounded tree-width	NP-hard	NP-hard

Graph class ${\cal F}$	$\operatorname{HomRec}(\mathcal{F})$	$\operatorname{BHomRec}(\mathcal{F})$
all graphs	$NP^{\#P} ext{-hard}$	NP ^{#P} -complete
bounded tree-width	NP-hard	NP-hard
finite set of graphs		

Graph class ${\cal F}$	$\operatorname{HomRec}(\mathcal{F})$	$\operatorname{BHomRec}(\mathcal{F})$
all graphs	NP ^{#P} -hard	NP ^{#P} -complete
bounded tree-width	NP-hard	NP-hard
finite set of graphs	NP-hard	

Graph class ${\cal F}$	$\operatorname{HomRec}(\mathcal{F})$	$\operatorname{BHomRec}(\mathcal{F})$
all graphs	NP ^{#P} -hard	NP ^{#P} -complete
bounded tree-width	NP-hard	NP-hard
finite set of graphs	NP-hard	not NP-hard (unless $P=NP$)

QPoly

Input:

 $a,b,c\in\mathbb{N}$

Question:

Are there $x, y \in \mathbb{N}$

such that

 $ax^2 + by = c$

A bit less easy Reduction

QPOLY **Input:** $a, b, c \in \mathbb{N}$ **Question:** Are there $x, y \in \mathbb{N}$ such that $ax^2 + by = c$

Tractability Results

Tractability Results

FPT algorithm

• FPT algorithm (for computable f, running time of $f(\sum |F_i|) \cdot poly(n)$)

- FPT algorithm (for computable f, running time of $f(\sum |F_i|) \cdot poly(n)$)
- One constraint tuple (*F*₁, *c*₁)

- FPT algorithm (for computable f, running time of $f(\sum |F_i|) \cdot poly(n)$)
- One constraint tuple (F_1, c_1) \checkmark

- FPT algorithm (for computable f, running time of $f(\sum |F_i|) \cdot poly(n)$)
- One constraint tuple (F_1, c_1) 🗸
- Multiple, connected graphs of the same size

- FPT algorithm (for computable f, running time of $f(\sum |F_i|) \cdot poly(n)$)
- One constraint tuple (F_1, c_1) 🗸
- Multiple, connected graphs of the same size, but only if we look at subgraph counts instead of homomorphism counts

- FPT algorithm (for computable f, running time of $f(\sum |F_i|) \cdot poly(n)$)
- One constraint tuple (F_1, c_1) 🗸

- FPT algorithm (for computable f, running time of $f(\sum |F_i|) \cdot poly(n)$)
- One constraint tuple (F_1, c_1) 🗸
- That's it.

It's a really hard problem

It's a really hard problem (at least NP $^{\#P}$ and still NP-hard with massively restricted constraint graph classes).

It's a really hard problem (at least NP $^{\#P}$ and still NP-hard with massively restricted constraint graph classes).

Open questions!

It's a really hard problem (at least NP $^{\#P}$ and still NP-hard with massively restricted constraint graph classes).

Open questions!

How hard is the problem exactly? (we only know it's in NEXP)

It's a really hard problem (at least NP $^{\#P}$ and still NP-hard with massively restricted constraint graph classes).

Open questions!

- How hard is the problem exactly? (we only know it's in NEXP)
- Other tractability results? What about two constraints? Approximations?

It's a really hard problem (at least NP $^{\#P}$ and still NP-hard with massively restricted constraint graph classes).

Open questions!

- How hard is the problem exactly? (we only know it's in NEXP)
- Other tractability results? What about two constraints? Approximations?
- What happens if we have homomorphism density constraints instead of counts?