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So how hard is it the problem actually?

Graph class F HoMREC(F) | BHOMREC(F)

all graphs NP#P_hard NP#P_complete

bounded tree-width | NP-hard NP-hard

finite set of graphs | NP-hard not NP-hard (unless P= NP)

coNP C PH C P#P C NP#P(= NPPP) C PSPACE C NEXP
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QPoLy
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a,b,ceN
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such that

ax?>+ by = c

hom( o—e—o ) =1
Ma R X
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Tractability Results

= FPT algorithm (for computable f, running time of (3" |F;|)- poly(n))
= One constraint tuple (F1,c1) v

= Multiple, connected graphs of the same size, but only if we look at subgraph counts
instead of homomorphism counts v

= That's it.
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It's a really hard problem (at least NP#P and still
NP-hard with massively restricted constraint graph
classes).

Open questions!

= How hard is the problem exactly? (we only know it's in NEXP)
= Other tractability results? What about two constraints? Approximations?

= What happens if we have homomorphism density constraints instead of counts?
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