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Part I.Why?



Graph colouring

G

H

Given two graphs G = (VG ,EG ) and H = (VH ,EH), a graph homomorphism G → H is a mapping
h : VG → VH that preserves edges,

uv ∈ EG ⇒ h(u)h(v) ∈ EH .

Example. A colouring of a graph G with k colours is just a homomorphism c : G → Kk .
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Brakensiek–Guruswami conjecture and the H-colouring dichotomy

Conjecture [Brakensiek, Guruswami, 2018].
For evert k > 0 and c > 2, it is NP-complete to
distinguish graphs that map homomorphically to
C(2k+1) from those that are not c-colourable.

[1] Krokhin, O (2019). The complexity of 3-colouring
H-colourable graphs. FOCS 2019.

[2] Wrochna, Živný (2020). Improved hardness for
H-colourings of G -colourable graphs. SODA 2020.

[3] Avvakumov, Filakovský, O, Tasinato, & Wagner (2025).
Hardness of 4-colouring G -colourable graphs. STOC 2025.

Theorem [Avvakumov et al., 2025].
Colouring graphs that are promised to map
homomorphically to C(2k+1) with 4 colours is
NP-complete.

H-colouring
Fix a graph H (called template). Given a graph G ,
decide whether there is a homomorphism G → H .

Theorem [Hell & Nešetřil, 1990].
Unless P = NP, the only (non-trivial) graph H-colouring
problem that is solvable in polynomial time is
2-colouring.
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Outline of the proof

Theorem [Hell & Nešetřil, 1990].
Unless P = NP, the only graph H-colouring problem that
is solvable in polynomial time is 2-colouring.

H

1. Identify which problems are NP-hard using the
algebraic approach to the constraint satisfaction
problem.

2. If H-colouring is not NP-hard, show that its
solution spaces are component-wise
contractible.

3. Use Brower’s fixed-point theorem to show that
H has a loop if H is not bipartite.



Part II.What the . . . is the solution space of H-colouring?



Solution spaces

K2 → K3

0 1 →
0 1

2
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A multihomomorphism is a function

f : V (G) → 2V (H) \ {∅}

such that, for all edges uv ∈ E(G), we have that

f (u)× f (v) ⊆ E(H).

The space Hom(G ,H)

Example. Hom(K2,K3) ≃ S1.
Example. There are multihom. K2

m→ K4:

01 ≤ 02|1 ≤ 02|13
and

01 ≤ 0|12 ≤ 0|123

which creates 2-dimensional faces in Hom(K2,K4).

Hom(K2,H) is homotopy-equivalent to the space used by
[Lovász, 1977] to provide lower bounds on chromatic number of
Kneser graphs.
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4-colourings of K2
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Part III. A proof



Outline of the proof

Theorem [Hell & Nešetřil, 1990].
Unless P = NP, the only graph H-colouring problem that
is solvable in polynomial time is 2-colouring.

H

1. Identify which problems are NP-hard using the
algebraic approach to the constraint satisfaction
problem.

2. If H-colouring is not NP-hard, show that its
solution spaces are component-wise
contractible.

3. Use Brower’s fixed-point theorem to show that
H has a loop if H is not bipartite.
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Algebraic approach to the constraint satisfaction problem

An operation t : An → A is Taylor

t(x ∗ ... ∗) = t(y ∗ ... ∗)
t(∗ x ... ∗) = t(∗ y ... ∗)

...
t(∗ ∗ ... x) = t(∗ ∗ ... y)

for all x , y ∈ A.
t : An → A is idempotent if t(x , ... , x) = x .

Theorem (CSP Dichotomy).
A CSP with a finite template A is either
1. admits a Taylor homomorphism t : An → A, and is

in P [Bulatov, 2017; Zhuk, 2017]; or
2. does not admit a Taylor homomorphism, and is

NP-complete [Bulatov, Jeavons, Krokhin, 2005].

Lemma [Taylor, 1977].
If a topological space X admits a continuous
idempotent Taylor operation t , then π1(X ) is Abelian.

A topological space X is called contractible if it is
homotopy equivalent to a point {∗}. For us, this is
equivalent to πn(X ) = 0 for all n ≥ 0.

Theorem [Larose, Zádori, 2005].
Every connected finite poset that admits a monotone
Taylor operation is contractible.

Theorem [Meyer, 2024; Meyer, O, 2025].
If H admits a Taylor homomorphism, then Hom(G ,H)
is component-wise contractible for every G .
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4-colourings of K2

Hence, 4-colouring is NP-hard!



The proof

Theorem [Hell & Nešetřil, 1990].
Unless P = NP, the only graph H-colouring problem that
is solvable in polynomial time is 2-colouring.

H

Proof. Assume that H is not-bipartite, and consider the
space X = Hom(K2,H).
Observe that the space admits a fixed-point free Z2-action
ϕ : X → X that for each multihomomorphismm flips the
values ofm(0) andm(1).
If H is not-bipartite then ϕ fixes a connected component
of X . Indeed, if uv is an edge of an odd cycle of H then uv
is connected to vu = ϕ(uv).
If H admitted a Taylor homomorphism,mhom(K2,H)
would admit a lax-Taylor operation, and all its connected
component would be contractible.
Hence, ϕ which acts on the component of uv has a fixed
point by the Brower’s fixed point theorem, hence H has a
loop. ■



How does the topology of the solution space influence the
complexity of a computational problem?

[1] Schnider, Weber (2024). A topological version of Schaefer’s
dichotomy theorem. SoCG 2024.

[2] Meyer (2024). A dichotomy for finite abstract simplicial
complexes. arXiv:2408.08199.

[3] Meyer, O (2025). A topological proof of the Hell–Nešetřil
dichotomy. SODA 2025.

Theorem [Meyer, 2024; Meyer, O, 2025].
A constraint satisfaction problem is NP-complete, unless
each connected component of the solution space is
contractible (i.e., topologically trivial).

Corollary [Hell & Nešetřil, 1990].
Unless P = NP, the only graph H-colouring problem that
is solvable in polynomial time is 2-colouring.

[4] Briceño, Bulatov, Dalmau, Larose (2021). Dismantlability,
connectedness, and mixing in relational structures. JCT B
147: 37–70.

Theorem [Briceño et al., 2017].
A constraint satisfaction problem is expressible in FO if
and only if the solutions spaces are contractible (or
empty).
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