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A = (A; R1, . . . , Rk ) fixed relational structure
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• A is called the template of the problem• Hom(A) also called the constraint satisfaction problem (CSP) of A

∀R ∀x1, . . . , xn((x1, . . . , xn) ∈ RX =⇒ (h(x1), . . . , h(xn)) ∈ RA)
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Why CSPs with infinite templates?
• Linear programming, diophantine equations, polynomial equations over Q, . . .

1. k-coloring, Boolean satisfiability, linear equations over Zp, . . .2. Hope for a general understanding of a class of problemsWant to understand why problems are easy/hard3. Connection between tractability and closure properties4. Natural class due to connection with Monotone Monadic SNP without inequalities (MMSNP)
Monotone SNP Monadic SNP MMSNP ̸=

MMSNP
Finite CSPs

NP-rich

Not NP-rich?

• Why even CSPs with finite domains?(Not the infinite CSPs this talk is about)
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Template-free CSPs

Let C be a class of "instances".When is this the set of yes-instances of CSP(A) for some A?
Observation.
∃A : C = CSP(A) iff C is closed under disjoint unions and relaxations (inverse homomorphisms)

• Take A = ∐
X∈C X• Can be a useful point of view, but most likely not• Call C a CSP if it satisfies those properties

Given X, does there exist a homomorphism X→ A?CSP(A)
↔ C = {X | ∃h : X→ A}
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Template-free CSPs: 3-coloring
Goal: understand finite 3-colorable graphs

C = {G finite graph | G is 3-colorable}
Take G∗ = ∐

G∈C G

CSP(G∗) is the problem of deciding “G ∈ C?”
G∗ ⇄ K3 so CSP(G∗) = CSP(K3)

Step 1:
Step 2:
Step 3:
Step 4:

Take G∗ = ∐
G∈C G
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Template-free CSPs: Acyclicity
Goal: understand finite acyclic directed graphs

C = {G finite digraph | G acyclic}
Take G∗ = ∐

G∈C G

CSP(G∗) is the problem of deciding “G ∈ C?”
CSP(G∗) = CSP(N; <). Acyclic digraphs are those with a topological ordering.

Step 1:
Step 2:
Step 3:
Step 4:

Take G∗ = ∐
G∈C G
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Goal: understand ∃ 2-edgecolorings withoutmonochromatic triangle

Take G∗ = ∐
G∈C G

CSP(G∗) is the problem of deciding “G ∈ C?”
G∗ ⇄ ?

Step 1:
Step 2:
Step 3:
Step 4:

Take G∗ = ∐
G∈C G

Observation. ∀n ≥ 1∃G triangle-free that cannot be partitioned into n independent sets.

C = Forbh( )
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Template-free CSPs: cyclic orientability
v1

v2
v3

Can one not see this as afinite label cover instance? →

←

→

←

→

←

This potato is implied, added automatically:• 1 constraint per triangle• This type of constraint is not accessible as a“real” ternary constraint

v1

v2

v3

v1v2

v1v3

v2v3

v1v2v3
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Similarities between these problems
All problems so far:• reduce to label cover over a finite set• some structural constraints are "automatically" added• structural constraints are not part of the "normal" constraints• scope of structural constraints is of bounded size• Except for 3-coloring, not CSP(A) for a finite A, yet CSP(A) for some structures (disjoint unions)

What templates to study these problems?How to study the complexity of the problems using these templates?
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Orbit-finiteness,reducts of finitely bounded homogeneous structures
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Template-free CSPs: cyclic orientability
Define V = {G ∗ G⃗ | G⃗ cyclic orientation of G}

structure with two edge relations
V has the (free) amalgamation property:

⊕ =

Theorem (Fraïssé). If V is hereditary and has the amalgamation property, there exists G∗ such that:• The finite substructures of G∗ are exactly those in V• For any isomorphism f : G → G′ between finite substructures of G∗, there exists α ∈ Aut(G∗) s.t.
α|G = f .

G∗ is unique up to isomorphism: it is the Fraïssé limit of V.

(where (V ; E) ∗ (V ; A) = (V ; E, A))

This is called homogeneity
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Theorem (Fraïssé). If V is hereditary and has the amalgamation property, there exists G∗ such that:• The finite substructures of G∗ are exactly those in V• For any isomorphism f : G → G′ between finite substructures of G∗,there exists α ∈ Aut(G∗) s.t. α|G = f .
G∗ is unique up to isomorphism: it is the Fraïssé limit of V.

Template for cyclic orientability
Define V = {G ∗ G⃗ | G⃗ cyclic orientation of G}

Here:• G∗ = (V ; E, A) is an infinite graph withcyclic orientation

G = (V ; E)

• G = (V ; E) is a reduct of G∗• The finite subgraphs of (V ; E) are exactly thefinite graphs that admit some cyclic orientation• CSP(V ; E) = C = CSP(∐H∈C H)
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Template for cyclic orientability
Why is G “better” than ∐

H∈C H?
Homogeneity

v v ′
≃ ⇒ ∃α ∈ Aut(G∗) : α(v ) = v ′

v
v ′

≃ ⇒ ∃α ∈ Aut(G∗) : α(e) = e′e e′

Finitely many directed graphs on n vertices
⇝ Aut(G∗) ↷ V n has finitely many orbitsAut(G) is oligomorphic / G is ω-categorical e

e′
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Template for cyclic orientability
Why is G “better” than ∐

H∈C H?
CSP(V ; E) as true label cover →

←

→

←

→

←

→

←

→

←

→

←

v1
v2

v3

"Fake" label cover



Antoine Mottet (TU Hamburg) 16

Template for cyclic orientability
Why is G “better” than ∐

H∈C H?
CSP(V ; E) as true label cover v1
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v3

v1v2

v1v3

v2v3

v1
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v3
⇝

Elements of V

Elements of E
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Template-free CSPs: The conjecture (part 1)
Conjecture. Let C be a CSP

Then C is in P or NP-complete.
Wrong because:• ∃ undecidable CSPs: polynomial equations over Z (Davis, Putnam, Robinson, Matiyasevich)• ∃ NP-intermediate CSPs if P̸=NP (Ladner)
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Template-free CSPs: The conjecture (part 1)
Conjecture. Let C be a CSP

C KV

• For all A ∈ C, there exists K ∈ K such that A ∗K ∈ V (yes-instances have a certificate)
Then C is in P or NP-complete.

such that there exists a finitely bounded Fraïssé class K (the certificates)and a verifier V ⊆ C ∗ K such that:
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Conjecture. Let C be a CSP

(⊆ means non-induced substructure)

Under those conditions:• C = CSP(A), where A is a reduct of a finitely boundedhomogeneous structure A∗.• Aut(A) is oligomorphic / A is ω-categorical

C KV

• For all A ∈ C, there exists K ∈ K such that A ∗K ∈ V (yes-instances have a certificate)
CSPs of reducts of finitely bounded homogeneous structures: The Bodirsky-Pinsker conjecture
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• ∀A ∗K ∈ V and K ↪→ L ∈ K, ∃A ⊆ B ∈ K such that B ∗ L ∈ V (bigger certificates are fine)• ∀B ∗K ∈ V and A ⊆ B, A ∗K|A ∈ V (smaller instances are fine)• ∀K ∈ K, {A ∈ C | A ∗K ∈ V} has a maximal elementThen C is in P or NP-complete.
Non-examples:• C = satisfiable systems of affine equations over Z• . . . feasible linear programs Ax ≤ b• . . . systems of satisfiable polynomial equations over Q

such that there exists a finitely bounded Fraïssé class K (the certificates)and a verifier V ⊆ C ∗ K such that:
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• ∀A ∗K ∈ V and K ↪→ L ∈ K, ∃A ⊆ B ∈ K such that B ∗ L ∈ V (bigger certificates are fine)• ∀B ∗K ∈ V and A ⊆ B, A ∗K|A ∈ V (smaller instances are fine)• ∀K ∈ K, {A ∈ C | A ∗K ∈ V} has a maximal elementThen C is in P or NP-complete.

such that there exists a finitely bounded Fraïssé class K (the certificates)and a verifier V ⊆ C ∗ K such that:

Examples:• Order CSPs• GMSNP: problems of coloring edges of a graphwhile avoiding forbidden configurations
e.g. Forbh

( ),
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Example: order CSPs
Problem. Betweenness is the following problem:
Input: variables V and constraints Betw(x, y, z)
Question: is there a linear order on V such that x < y < z or z < y < x for every constraint?
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Example: order CSPs

Instance of the Betweenness Satisfiability certificate

Problem. Betweenness is the following problem:
Input: variables V and constraints Betw(x, y, z)
Question: is there a linear order on V such that x < y < z or z < y < x for every constraint?
The class C of yes-instances satisfies the conditions of the conjecture:
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Example: order CSPs

Instance of the Betweenness Satisfiability certificate

Problem. Betweenness is the following problem:
Input: variables V and constraints Betw(x, y, z)
Question: is there a linear order on V such that x < y < z or z < y < x for every constraint?
The class C of yes-instances satisfies the conditions of the conjecture:

By Fraïssé’s theorem, Betweenness is CSP(Q; Betw) Betw = {(a, b, c) | a < b < c ∨ c < b < a}
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Example: order CSPs
Problem. And/or precedence is the following problem:
Input: variables V and constraints R (x, y, z)
Question: is there a linear order on V such that x > y ∨ x > z for every constraint?

Instance of and/or precedence Satisfiability certificate
The class C of yes-instances satisfies the conditions of the conjecture:

By Fraïssé’s theorem, and/or precedence is CSP(Q; R ) R = {(a, b, c) | a > b ∨ a > c}
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The conjecture is proved when K is...
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The conjecture is proved when K is...
Maps to a finite set(Bulatov) (Zhuk)

Instance of CSP(A) Satisfiability certificate
0 1 0

2
2

0 01
1
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The conjecture is proved when K is...
Maps to a finite set(Bulatov) (Zhuk) Linear orders(Bodirsky, Kára)

Instance of the Betweenness Satisfiability certificate
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The conjecture is proved when K is...
Maps to a finite set(Bulatov) (Zhuk) Linear orders(Bodirsky, Kára) Graphs(Bodirsky, Martin,Pinsker, Pongrácz)

Instance of CSP(A) Satisfiability certificate
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The conjecture is proved when K is...
Maps to a finite set(Bulatov) (Zhuk) Linear orders(Bodirsky, Kára) Graphs(Bodirsky, Martin,Pinsker, Pongrácz)

Partial orders(Kompatscher, Pham)

Monadically stable(Bodor)

Unary structures(Bodirsky, M.)

Tournaments(M., Pinsker)

Hypergraphs(M., Nagy, Pinsker)
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The conjecture is proved when K is...
Maps to a finite set(Bulatov) (Zhuk) Linear orders(Bodirsky, Kára) Graphs(Bodirsky, Martin,Pinsker, Pongrácz)

Partial orders(Kompatscher, Pham)

Monadically stable(Bodor)

Unary structures(Bodirsky, M.)

Tournaments(M., Pinsker)

Hypergraphs

Any finitelybounded Fraïsséclass

Colored linear orders

Directed graphs(M., Nagy, Pinsker)
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The universal-algebraic approach: how to study CSPs



Antoine Mottet (TU Hamburg) 21

Closure properties: polymorphisms
Definition. A polymorphism of A is a function f : An → A such that for every relation RA we have

a1, . . . , an ∈ RA =⇒ f (a1, . . . , an) ∈ RA

(f (a11, . . . , an1 ), . . . , f (a1
r , . . . , an

r ))=
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∑
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∈
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∈
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10 01∈
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11Non-example:
R = {(1, 0), (0, 1)}
f = ∨ ̸∈

R
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Closure properties: polymorphisms
Definition. A polymorphism of A is a function f : An → A such that for every relation RA we have

a1, . . . , an ∈ RA =⇒ f (a1, . . . , an) ∈ RA

(f (a11, . . . , an1 ), . . . , f (a1
r , . . . , an

r ))=

Examples:• Cyclic orientations: both majority and minority
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Closure properties: polymorphisms
Definition. A polymorphism of A is a function f : An → A such that for every relation RA we have

a1, . . . , an ∈ RA =⇒ f (a1, . . . , an) ∈ RA

• If h1, . . . , hn : X→ A are solutions, f ◦ (h1, . . . , hn) is a solution• Pol(A) is a clone (contains projections, closed under composition)• If R ⊆ Ar is pp-definable, then R is preserved by Pol(A)
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Closure properties: polymorphisms
Definition. A polymorphism of A is a function f : An → A such that for every relation RA we have

a1, . . . , an ∈ RA =⇒ f (a1, . . . , an) ∈ RA

• If h1, . . . , hn : X→ A are solutions, f ◦ (h1, . . . , hn) is a solution• Pol(A) is a clone (contains projections, closed under composition)• If R ⊆ Ar is pp-definable, then R is preserved by Pol(A)
definable by {∃,∧}-formulaMotto:• Pol(A) "rich" ⇒ can use polymorphisms to narrow down search space

f (x, x, y) = f (x, y, x) = f (y, x, x) = f (x, x, x) or f (x, x, y) = f (x, y, x) = f (y, x, x) = f (y, y, y)
• Pol(A) "poor" ⇒ instances of CSP(A) can have complicated solution spaces

majority minority
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Polymorphisms and pp-definability
Theorem (Bodirsky, Nešetřil). Let A be ω-categorical and R ⊆ Ar .Then R is pp-definable in A iff R is preserved by Pol(A).



Antoine Mottet (TU Hamburg) 22

Polymorphisms and pp-definability
Theorem (Bodirsky, Nešetřil). Let A be ω-categorical and R ⊆ Ar .Then R is pp-definable in A iff R is preserved by Pol(A).

a11

a1
r

a21

a2
r

an1

an
r

( )

( )
...... ...

• For B ⊆ An finite and a1, . . . , an ∈ Ar ,
{f (a1, . . . , an) | f : B→ A} is pp-definable a1 a2 an

b1 =

br =

· · ·

· · ·

= = =

Lemma. Let X be a finite structure, x1, . . . , xn ∈ X .There exists a pp-formula φX(x1, . . . , xn) such that for all A:
A |= φX(a1, . . . , an)⇐⇒ ∃h : X→ A∀i : h(xi) = ai
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Polymorphisms and pp-definability
Theorem (Bodirsky, Nešetřil). Let A be ω-categorical and R ⊆ Ar .Then R is pp-definable in A iff R is preserved by Pol(A).• For B ⊆ An finite and a1, . . . , an ∈ Ar ,
{f (a1, . . . , an) | f : B→ A} is pp-definable• φB defines R1 = {f (a1, . . . , an) | f : B→ A}

R1
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Polymorphisms and pp-definability
Theorem (Bodirsky, Nešetřil). Let A be ω-categorical and R ⊆ Ar .Then R is pp-definable in A iff R is preserved by Pol(A).• For B ⊆ An finite and a1, . . . , an ∈ Ar ,
{f (a1, . . . , an) | f : B→ A} is pp-definable• φB defines R1 = {f (a1, . . . , an) | f : B→ A}• Subset of Ar closed under Aut(A)

R1
f (a1, . . . , an)

(α ◦ f )(a1, . . . , an)
(β ◦ f )(a1, . . . , an)
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• For some finite B, φB defines {f (a1, . . . , an) | f : An → A}
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• For some finite B, φB defines {f (a1, . . . , an) | f : An → A}• If a1, . . . , an generate R under Pol(A), this is exactly R
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i≥1 Ri ̸= ∅.This is the standard compactness argument.

R1

R2
R3

R4
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R6
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• For some finite B, φB defines {f (a1, . . . , an) | f : An → A}• If a1, . . . , an generate R under Pol(A), this is exactly R• We can always find finitely many generators, by ω-categoricity
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Polymorphisms and pp-definability
Theorem (Bodirsky, Nešetřil). Let A be ω-categorical and R ⊆ Ar .Then R is pp-definable in A iff R is preserved by Pol(A).
Corollary. If A is ω-categorical, the complexity of CSP(A) only depends on Pol(A).Pol(A) ⊆ Pol(B) =⇒ CSP(B) ≤P CSP(A)
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Polymorphisms and pp-definability
Theorem (Bodirsky, Nešetřil). Let A be ω-categorical and R ⊆ Ar .Then R is pp-definable in A iff R is preserved by Pol(A).
Corollary. If A is ω-categorical, the complexity of CSP(A) only depends on Pol(A).

This order is way too fine, no hope of understanding it all (already continuum many clones on {0, 1, 2})

all clones on a given set A all CSPs on A

Pol(A) ⊆ Pol(B) =⇒ CSP(B) ≤P CSP(A)

P

NP-hard
all operations

projections
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all clones on {0, 1} (Post)
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Polymorphisms and pp-definability
Theorem (Bodirsky, Nešetřil). Let A be ω-categorical and R ⊆ Ar .Then R is pp-definable in A iff R is preserved by Pol(A).
Corollary. If A is ω-categorical, the complexity of CSP(A) only depends on Pol(A).
Definition (Minion homomorphism). A map ξ : Pol(A)→ Pol(B)such that whenever f (vars) = g(vars′) in Pol(A), then
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Polymorphisms and pp-definability
Theorem (Bodirsky, Nešetřil). Let A be ω-categorical and R ⊆ Ar .Then R is pp-definable in A iff R is preserved by Pol(A).
Corollary. If A is ω-categorical, the complexity of CSP(A) only depends on Pol(A).
Definition (Minion homomorphism). A map ξ : Pol(A)→ Pol(B)such that whenever f (vars) = g(vars′) in Pol(A), then
ξ(f )(vars) = ξ(g)(vars′) in Pol(B).Maps preserving minor conditions:

Pol(A) ⊆ Pol(B) =⇒ CSP(B) ≤P CSP(A)

all clones on {0, 1} (Post)

f (x, x, y, z) = g(y, z, z, x)⇒ ξ(f )(x, x, y, z) = ξ(g)(y, z, z, x)
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Polymorphisms and pp-definability
Theorem (Bodirsky, Nešetřil). Let A be ω-categorical and R ⊆ Ar .Then R is pp-definable in A iff R is preserved by Pol(A).
Corollary. If A is ω-categorical, the complexity of CSP(A) only depends on Pol(A).
Definition (Minion homomorphism). A map ξ : Pol(A)→ Pol(B)such that whenever f (vars) = g(vars′) in Pol(A), then
ξ(f )(vars) = ξ(g)(vars′) in Pol(B).Maps preserving minor conditions:

Pol(A) ⊆ Pol(B) =⇒ CSP(B) ≤P CSP(A)

clones on {0, 1} up to →(Bodirsky, Vucaj)

f (x, x, y, z) = g(y, z, z, x)⇒ ξ(f )(x, x, y, z) = ξ(g)(y, z, z, x)
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Conjecture (Bodirsky, Pinsker). Let A be a reduct of a finitely bounded homogeneous structure.Suppose ∄ uniformly continuous minion homomorphism Pol(A)→ Pol(K3). Then CSP(A) is in P.
The conjecture (part 2)
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Pol(B1,A)
Pol(B2,A)
Pol(B3,A)
Pol(B4,A)

...

restr
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Pol(A)

The conjecture (part 2)

Pol(B1,A)
Pol(B2,A)
Pol(B3,A)
Pol(B4,A)

...

Pol(K3)restr
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Conjecture (Bodirsky, Pinsker). Let A be a reduct of a finitely bounded homogeneous structure.Suppose ∄ uniformly continuous minion homomorphism Pol(A)→ Pol(K3). Then CSP(A) is in P.

Pol(A)

The conjecture (part 2)

Pol(B1,A)
Pol(B2,A)
Pol(B3,A)
Pol(B4,A)

...

Pol(K3)

{f : Bn → A | n ≥ 1}Those are minions

restr
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Conjecture (Bodirsky, Pinsker). Let A be a reduct of a finitely bounded homogeneous structure.Suppose ∄ uniformly continuous minion homomorphism Pol(A)→ Pol(K3). Then CSP(A) is in P.

Pol(A)

The conjecture (part 2)
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Conjecture (Bodirsky, Pinsker). Let A be a reduct of a finitely bounded homogeneous structure.Suppose ∄ uniformly continuous minion homomorphism Pol(A)→ Pol(K3). Then CSP(A) is in P.

Pol(A)

The conjecture (part 2)

Pol(B1,A)
Pol(B2,A)
Pol(B3,A)
Pol(B4,A)

...

Pol(K3)

{f : Bn → A | n ≥ 1}Those are minions

restr

Why not directly maps Pol(A)→ Pol(K3)?

contains only unary functions
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Topology matters, maybe?
Theorem (Gillibert, Jonušas, Kompatscher, M., Pinsker).There exists an ω-categorical A with finite signature such that:• Pol(A) does not satisfy any non-trivial minor condition
⇝ ∃ minion homomorphism Pol(A)→ Pol(K3)• Pol(B,A) satisfies a non-trivial minor condition for every finite B ⊆ A
⇝ ∄ uniformly continuous minion homomorphism Pol(A)→ Pol(K3)

Disclaimer: A not subject to the dichotomy conjecture

Pol(A)
Pol(B1,A)
Pol(B2,A)
Pol(B3,A)

Pol(K3)
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Identities and complexity
Conjecture. No uniformly continuous minion homomorphism Pol(A)→ Pol(K3) implies CSP(A) in P.
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• Pol(A) has for some k ≥ 3 a weak near unanimity operation (Maróti, McKenzie)
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• Pol(A) has for all large prime n ≥ 3 a cyclic operation (Barto, Kozik)

c(x1, . . . , xn) ≈ c(x2, . . . , xn, x1)

Conjecture. No uniformly continuous minion homomorphism Pol(A)→ Pol(K3) implies CSP(A) in P.

=⇒ "CSP(A) ∈ P" expressible in existential second-order logic!
∃S ∀x, y, z : S(x, y, x, z, y, z) = S(y, x, z, x, z, y) ∧ S is a polymorphism
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Identities and complexity
Can one hope for such a nice characterization of P for infinite-domain CSPs?
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Theorem (Bodirsky, M., Olšák, Opršal, Pinsker, Willard). Let Σ be a minor condition.
∃ reduct A of a finitely bounded homogeneous structure such that:• Pol(A) satisfies some non-trivial minor condition• Pol(A) does not satisfy Σ• CSP(A) is definable in FO
Theorem (Gillibert, Kompatscher, Jonušas, M., Pinsker). Let C be a class of ω-categorical structuressuch that {CSP(A) | A ∈ C}:

Can one hope for such a nice characterization of P for infinite-domain CSPs?

We know Pol(A) characterizes the complexity of CSP(A), but we don’t know exactly why.

• contains the FO-definable CSPs,• does not intersect every Turing degree.Then C cannot be defined by existential second-order logiceven allowing countably-many existential quantifiers followed by countable disjunction of fo-formulas.
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Current research directions
Proving hardness of CSPs:• Idea: lift hardness from the finite label cover instances

v1v2

v1v3

v2v3

v1v2v3

Problem (Monochromatic triangle).• Input: A finite undirected graph G = (V , E)• Question: Does there exist a coloring
χ : E → {R, B} such that χ−1(c) is triangle-freefor every c ∈ {R, B}?

v1
v2

v3
⇝
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Current research directions
Proving hardness of CSPs:• Idea: lift hardness from the finite label cover instances• Requires extending partial homomorphisms Pol(A) ⇀ Pol(K3)

Proving tractability of CSPs:• If finite label cover instances are tractable, CSP(A) is tractable• Otherwise: need new algorithms?
– Order CSPs (Bodirsky, Kára)
– Phylogenetic CSPs (Aho, Sagiv, Symanski, Ullman)
– Hypergraph CSPs (M., Nagy, Pinsker)• Recent advances suggesting more connections with finite CSPs (M.) (M., Nagy)Connections with promise CSPs

• Theory of smooth approximations (M., Pinsker JACM’24)(M., Nagy, Pinsker, Wrona SICOMP’24)(M., Nagy, Pinsker ICALP’24)

• Definability: FO-definability, descriptive complexity• algorithmic transfers between CSPs and PCSPs• hardness transfers from CSPs to PCSPs
(M. CSL’24)(M. LICS’25)
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Connections with Promise CSPs
A→ C→ B
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Promise CSPs
Definition (Promise CSP). PCSP(A,B) is the problem to distinguish inputs X s.t.:
Yes: X→ A
No: X ̸→ B

A

B

Theorem (Brakensiek, Guruswami + Barto).PCSP(1in3, NAE) is:• solvable in polynomial time• not solvable by a finite-domain CSP

(Z; x + y + z = 1)

PCSP(Kk , Kℓ ): distinguish between graphs G that are• k-colorable (χ(G) ≤ k)• far from k-colorable (χ(G) > ℓ)
• Gets easier as the gap between k and ℓ grows• Conjectured to be NP-hard for all values of k ≤ ℓAlgorithms typically obtained by:• finding A→ C→ B such that CSP(C) is in P• sometimes, C must be infinite
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Promise CSPs
Definition (Promise CSP). PCSP(A,B) is the problem to distinguish inputs X s.t.:
Yes: X→ A
No: X ̸→ B
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B

Mod(Φ)

What about FO-separability?
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Promise CSPs
Definition (Promise CSP). PCSP(A,B) is the problem to distinguish inputs X s.t.:
Yes: X→ A
No: X ̸→ B

A

B

C

Theorem (essentially Rossman). The following are equivalent:• PCSP(A,B) FO-separable• there exists a finite C such that A→ C→ B and CSP(C) isFO-definable
Mod(Ψ)

What about FO-separability?
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Promise CSPs
Definition (Promise CSP). PCSP(A,B) is the problem to distinguish inputs X s.t.:
Yes: X→ A
No: X ̸→ B

A

B

Theorem (M.). There exist finite A,B such that:• PCSP(A,B) solvable by a Datalog program (∃+FP)• not solvable by a finite-domain CSP• solvable by a r.f.b.h. C, whose CSP is not solvable by aDatalog program
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Theorem (M.). There exist finite A,B such that:• PCSP(A,B) is not solvable in FPC• not solvable by a finite-domain CSP• solvable by a r.f.b.h. C
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Promise CSPs
Definition (Promise CSP). PCSP(A,B) is the problem to distinguish inputs X s.t.:
Yes: X→ A
No: X ̸→ B

A

B

Theorem (M.). There exist finite A,B such that:• PCSP(A,B) is not solvable in FPC• not solvable by a finite-domain CSP• solvable by a r.f.b.h. C
Many questions related to logical separability remain open



Antoine Mottet (TU Hamburg) 29

Infinite CSPs as (infinite, finite)-PCSPs
Theorem (M.). Let B be a reduct of a finitely bounded homogeneous structure B∗.There exists A (infinite) and Bfin (finite) s.t. CSP(B) is ptime equivalent to PCSP(A,Bfin).
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Pol(B)
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Pol(A2,Bfin)
Pol(A3,Bfin)
Pol(A4,Bfin)

...
(∀A′ ⊂ A finite : Pol(A′,Bfin) |= Σ)⇐⇒ Pol(B) |= Σ mod Aut(B∗)

Corollary (Barto, Bulín, Opršal, Krokhin).If Pol(B) does not contain pseudo-Olšákoperations, then CSP(B) is NP-hard.
e1f (x, x, y, y, y, x) ≈ e2f (x, y, x, y, x, y) ≈ e3f (y, x, x, x, y, y)

Finite minions!
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Infinite CSPs as (infinite, finite)-PCSPs
Theorem (M.). Let B be a reduct of a finitely bounded homogeneous structure B∗.There exists A (infinite) and Bfin (finite) s.t. CSP(B) is ptime equivalent to PCSP(A,Bfin).

Pol(B)

Pol(A1,Bfin)
Pol(A2,Bfin)
Pol(A3,Bfin)
Pol(A4,Bfin)

...
(∀A′ ⊂ A finite : Pol(A′,Bfin) |= Σ)⇐⇒ Pol(B) |= Σ mod Aut(B∗)

Finite minions!

Corollary (Atserias, Dalmau). If Pol(B) does not containa pseudo-WNU of some arity k ≥ 3, then CSP(B) is notin Datalog.
e1w(x, . . . , x, x, y) ≈ e2w(x, . . . , x, y, x) ≈ · · · ≈ ekw(y, x, . . . , x)
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Infinite CSPs as (infinite, finite)-PCSPs
Theorem (M.). Let B be a reduct of a finitely bounded homogeneous structure B∗.There exists A (infinite) and Bfin (finite) s.t. CSP(B) is ptime equivalent to PCSP(A,Bfin).

Pol(B)

Pol(A1,Bfin)
Pol(A2,Bfin)
Pol(A3,Bfin)
Pol(A4,Bfin)

...
(∀A′ ⊂ A finite : Pol(A′,Bfin) |= Σ)⇐⇒ Pol(B) |= Σ mod Aut(B∗)

Finite minions!

Corollary (Barto, Bulín, Opršal, Krokhin). If Pol(B) doesnot contain a pseudo-Siggers operation, thenPCSP(K3,Kr) reduces to CSP(B).
u ◦ s(x, y, x, z, y, z) ≈ v ◦ s(y, x, z, x, z, y)
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Hardness of Monochromatic triangle
Problem (Monochromatic triangle). Following decision problem:
Input A finite undirected graph G = (V , E)
Question Does there exist a coloring χ : E → {R, B} such that χ−1(c) is triangle-free for every

c ∈ {R, B}?
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Hardness of Monochromatic triangle
Problem (Monochromatic triangle). Following decision problem:
Input A finite undirected graph G = (V , E)
Question Does there exist a coloring χ : E → {R, B} such that χ−1(c) is triangle-free for every

c ∈ {R, B}?
x1

x2
x3 x4

x5
x6

x7
x8

x9
x10

x6
x7

x5x1
x2x3

x4
⇝

Instance of Not-All-Equal Instance of monochromatic triangle

First attempt:
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c ∈ {R, B}?
x1

x2
x3 x4

x5
x6

x7
x8

x9
x10

x6
x7

x5x1
x2x3

x4Where to put the edge for x8?
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Instance of Not-All-Equal Instance of monochromatic triangle

First attempt:
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Problem (Monochromatic triangle). Following decision problem:
Input A finite undirected graph G = (V , E)
Question Does there exist a coloring χ : E → {R, B} such that χ−1(c) is triangle-free for every

c ∈ {R, B}?
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Instance of Not-All-Equal Instance of monochromatic triangle

First attempt:

The difference between NAE and Monochromatic Triangle:• In NAE: unrestricted use of ternary constraints• In Monochromatic triangle: ternary constraints (on edges) can only be imposed on triangles,and are automatically imposed on triangles
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Instance of Not-All-Equal
The difference between NAE and Monochromatic Triangle:• In NAE: unrestricted use of ternary constraints• In Monochromatic triangle: ternary constraints (on edges) can only be imposed on triangles,and are automatically imposed on triangles
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Second attempt:
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Instance of Not-All-Equal
The difference between NAE and Monochromatic Triangle:• In NAE: unrestricted use of ternary constraints• In Monochromatic triangle: ternary constraints (on edges) can only be imposed on triangles,and are automatically imposed on triangles

x1
x5

x2
x4x3

x8
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x6Second attempt:
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x10
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Problem (Monochromatic triangle). Following decision problem:
Input A finite undirected graph G = (V , E)
Question Does there exist a coloring χ : E → {R, B} such that χ−1(c) is triangle-free for every

c ∈ {R, B}?
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G
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Second attempt:
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Problem (Monochromatic triangle). Following decision problem:
Input A finite undirected graph G = (V , E)
Question Does there exist a coloring χ : E → {R, B} such that χ−1(c) is triangle-free for every

c ∈ {R, B}?
x1

x2
x3 x4

x5
x6

x7
x8

x9
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Instance of Not-All-Equal

x1
x5

x2
x4x3

G
G

G

G

G
G

x8

x7
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G
G

G

G

G

Second attempt:
x9

x10
G

G

G

G

G

G

Intuition:• In the finite template, equality comes for free• equality allows one to use "structural"constraints as "normal" constraints
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Input A finite undirected graph G = (V , E)
Question Does there exist a coloring χ : E → {R, B} such that χ−1(c) is triangle-free for every

c ∈ {R, B}?
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Instance of Not-All-Equal
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Second attempt:
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Proposition (Barsukov, M., Perinti). MonochromaticTriangle remains hard on K4-free graphs.(The gadget is beautiful but too large to fit on this slide)


