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A = (A; R1, . . . , Rk ) fixed relational structure
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• A is called the template of the problem• Hom(A) also called the constraint satisfaction problem (CSP) of A
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Why CSPs with infinite templates?
• Linear programming, diophantine equations, polynomial equations over Q, . . .

1. k-coloring, Boolean satisfiability, linear equations over Zp, . . .2. Hope for a general understanding of a class of problemsWant to understand why problems are easy/hard3. Connection between tractability and closure properties4. Natural class due to connection with Monotone Monadic SNP without inequalities (MMSNP)
Monotone SNP Monadic SNP MMSNP ̸=

MMSNP
Finite CSPs

NP-rich

Not NP-rich?

• Why even CSPs with finite domains?(Not the infinite CSPs this talk is about)
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Template-free CSPs

Let C be a class of "instances".When is this the set of yes-instances of CSP(A) for some A?
Observation.
∃A : C = CSP(A) iff C is closed under disjoint unions and relaxations (inverse homomorphisms)

• Take A = ∐
X∈C X• Can be a useful point of view, but most likely not• Call C a CSP if it satisfies those properties

Given X, does there exist a homomorphism X→ A?CSP(A)
↔ C = {X | ∃h : X→ A}
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Template-free CSPs: 3-coloring
Goal: understand finite 3-colorable graphs

C = {G finite graph | G is 3-colorable}
Take G∗ = ∐

G∈C G

CSP(G∗) is the problem of deciding “G ∈ C?”
G∗ ⇄ K3 so CSP(G∗) = CSP(K3)

Step 1:
Step 2:
Step 3:
Step 4:

Take G∗ = ∐
G∈C G
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Template-free CSPs: Acyclicity
Goal: understand finite acyclic directed graphs

C = {G finite digraph | G acyclic}
Take G∗ = ∐

G∈C G

CSP(G∗) is the problem of deciding “G ∈ C?”
CSP(G∗) = CSP(N; <). Acyclic digraphs are those with a topological ordering.

Step 1:
Step 2:
Step 3:
Step 4:

Take G∗ = ∐
G∈C G
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Goal: understand ∃ 2-edgecolorings withoutmonochromatic triangle

Take G∗ = ∐
G∈C G

CSP(G∗) is the problem of deciding “G ∈ C?”
G∗ ⇄ ?

Step 1:
Step 2:
Step 3:
Step 4:

Take G∗ = ∐
G∈C G

Observation. ∀n ≥ 1∃G triangle-free that cannot be partitioned into n independent sets.

C = Forbh( )
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Template-free CSPs: cyclic orientability
v1

v2
v3

Can one not see this as afinite label cover instance? →

←

→

←

→

←

This potato is implied, added automatically:• 1 constraint per triangle• This type of constraint is not accessible as a“real” ternary constraint

v1

v2

v3

v1v2

v1v3

v2v3

v1v2v3
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Similarities between these problems
All problems so far:• reduce to label cover over a finite set• some structural constraints are "automatically" added• structural constraints are not part of the "normal" constraints• scope of structural constraints is of bounded size• Except for 3-coloring, not CSP(A) for a finite A, yet CSP(A) for some structures (disjoint unions)

What templates to study these problems?How to study the complexity of the problems using these templates?
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Orbit-finiteness,reducts of finitely bounded homogeneous structures
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Template-free CSPs: cyclic orientability
Define V = {G ∗ G⃗ | G⃗ cyclic orientation of G}

structure with two edge relations
V has the (free) amalgamation property:

⊕ =

Theorem (Fraïssé). If V is hereditary and has the amalgamation property, there exists G∗ such that:• The finite substructures of G∗ are exactly those in V• For any isomorphism f : G → G′ between finite substructures of G∗, there exists α ∈ Aut(G∗) s.t.
α|G = f .

G∗ is unique up to isomorphism: it is the Fraïssé limit of V.

(where (V ; E) ∗ (V ; A) = (V ; E, A))

This is called homogeneity
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Theorem (Fraïssé). If V is hereditary and has the amalgamation property, there exists G∗ such that:• The finite substructures of G∗ are exactly those in V• For any isomorphism f : G → G′ between finite substructures of G∗,there exists α ∈ Aut(G∗) s.t. α|G = f .
G∗ is unique up to isomorphism: it is the Fraïssé limit of V.

Template for cyclic orientability
Define V = {G ∗ G⃗ | G⃗ cyclic orientation of G}

Here:• G∗ = (V ; E, A) is an infinite graph withcyclic orientation

G = (V ; E)

• G = (V ; E) is a reduct of G∗• The finite subgraphs of (V ; E) are exactly thefinite graphs that admit some cyclic orientation• CSP(V ; E) = C = CSP(∐H∈C H)
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Template for cyclic orientability
Why is G “better” than ∐

H∈C H?
Homogeneity

v v ′
≃ ⇒ ∃α ∈ Aut(G∗) : α(v ) = v ′

v
v ′

≃ ⇒ ∃α ∈ Aut(G∗) : α(e) = e′e e′

Finitely many directed graphs on n vertices
⇝ Aut(G∗) ↷ V n has finitely many orbitsAut(G) is oligomorphic / G is ω-categorical e

e′
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Template for cyclic orientability
Why is G “better” than ∐

H∈C H?
CSP(V ; E) as true label cover →

←

→

←

→

←

→

←

→

←

→

←

v1
v2

v3

"Fake" label cover
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Template for cyclic orientability
Why is G “better” than ∐
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CSP(V ; E) as true label cover v1
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v3

v1v2

v1v3

v2v3

v1
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v3
⇝

Elements of V

Elements of E
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Template-free CSPs: The conjecture (part 1)
Conjecture. Let C be a CSP

Then C is in P or NP-complete.
Wrong because:• ∃ undecidable CSPs: polynomial equations over Z (Davis, Putnam, Robinson, Matiyasevich)• ∃ NP-intermediate CSPs if P̸=NP (Ladner)
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Template-free CSPs: The conjecture (part 1)
Conjecture. Let C be a CSP

C KV

• For all A ∈ C, there exists K ∈ K such that A ∗K ∈ V (yes-instances have a certificate)
Then C is in P or NP-complete.

such that there exists a finitely bounded Fraïssé class K (the certificates)and a verifier V ⊆ C ∗ K such that:
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Conjecture. Let C be a CSP

(⊆ means non-induced substructure)

Under those conditions:• C = CSP(A), where A is a reduct of a finitely boundedhomogeneous structure A∗.• Aut(A) is oligomorphic / A is ω-categorical

C KV

• For all A ∈ C, there exists K ∈ K such that A ∗K ∈ V (yes-instances have a certificate)
CSPs of reducts of finitely bounded homogeneous structures: The Bodirsky-Pinsker conjecture
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• ∀A ∗K ∈ V and K ↪→ L ∈ K, ∃A ⊆ B ∈ K such that B ∗ L ∈ V (bigger certificates are fine)• ∀B ∗K ∈ V and A ⊆ B, A ∗K|A ∈ V (smaller instances are fine)• ∀K ∈ K, {A ∈ C | A ∗K ∈ V} has a maximal elementThen C is in P or NP-complete.
Non-examples:• C = satisfiable systems of affine equations over Z• . . . feasible linear programs Ax ≤ b• . . . systems of satisfiable polynomial equations over Q

such that there exists a finitely bounded Fraïssé class K (the certificates)and a verifier V ⊆ C ∗ K such that:
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• For all A ∈ C, there exists K ∈ K such that A ∗K ∈ V (yes-instances have a certificate)
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• ∀A ∗K ∈ V and K ↪→ L ∈ K, ∃A ⊆ B ∈ K such that B ∗ L ∈ V (bigger certificates are fine)• ∀B ∗K ∈ V and A ⊆ B, A ∗K|A ∈ V (smaller instances are fine)• ∀K ∈ K, {A ∈ C | A ∗K ∈ V} has a maximal elementThen C is in P or NP-complete.

such that there exists a finitely bounded Fraïssé class K (the certificates)and a verifier V ⊆ C ∗ K such that:

Examples:• Order CSPs• GMSNP: problems of coloring edges of a graphwhile avoiding forbidden configurations
e.g. Forbh

( ),
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Example: order CSPs
Problem. Betweenness is the following problem:
Input: variables V and constraints Betw(x, y, z)
Question: is there a linear order on V such that x < y < z or z < y < x for every constraint?
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Example: order CSPs

Instance of the Betweenness Satisfiability certificate

Problem. Betweenness is the following problem:
Input: variables V and constraints Betw(x, y, z)
Question: is there a linear order on V such that x < y < z or z < y < x for every constraint?
The class C of yes-instances satisfies the conditions of the conjecture:
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Example: order CSPs

Instance of the Betweenness Satisfiability certificate

Problem. Betweenness is the following problem:
Input: variables V and constraints Betw(x, y, z)
Question: is there a linear order on V such that x < y < z or z < y < x for every constraint?
The class C of yes-instances satisfies the conditions of the conjecture:

By Fraïssé’s theorem, Betweenness is CSP(Q; Betw) Betw = {(a, b, c) | a < b < c ∨ c < b < a}



Antoine Mottet (TU Hamburg) 18

Example: order CSPs
Problem. And/or precedence is the following problem:
Input: variables V and constraints R (x, y, z)
Question: is there a linear order on V such that x > y ∨ x > z for every constraint?

Instance of and/or precedence Satisfiability certificate
The class C of yes-instances satisfies the conditions of the conjecture:

By Fraïssé’s theorem, and/or precedence is CSP(Q; R ) R = {(a, b, c) | a > b ∨ a > c}
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The conjecture is proved when K is...
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The conjecture is proved when K is...
Maps to a finite set(Bulatov) (Zhuk)

Instance of CSP(A) Satisfiability certificate
0 1 0

2
2

0 01
1
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The conjecture is proved when K is...
Maps to a finite set(Bulatov) (Zhuk) Linear orders(Bodirsky, Kára)

Instance of the Betweenness Satisfiability certificate
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The conjecture is proved when K is...
Maps to a finite set(Bulatov) (Zhuk) Linear orders(Bodirsky, Kára) Graphs(Bodirsky, Martin,Pinsker, Pongrácz)

Instance of CSP(A) Satisfiability certificate
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The conjecture is proved when K is...
Maps to a finite set(Bulatov) (Zhuk) Linear orders(Bodirsky, Kára) Graphs(Bodirsky, Martin,Pinsker, Pongrácz)

Partial orders(Kompatscher, Pham)

Monadically stable(Bodor)

Unary structures(Bodirsky, M.)

Tournaments(M., Pinsker)

Hypergraphs(M., Nagy, Pinsker)
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The conjecture is proved when K is...
Maps to a finite set(Bulatov) (Zhuk) Linear orders(Bodirsky, Kára) Graphs(Bodirsky, Martin,Pinsker, Pongrácz)

Partial orders(Kompatscher, Pham)

Monadically stable(Bodor)

Unary structures(Bodirsky, M.)

Tournaments(M., Pinsker)

Hypergraphs

Any finitelybounded Fraïsséclass

Colored linear orders

Directed graphs(M., Nagy, Pinsker)



Antoine Mottet (TU Hamburg) 20

The universal-algebraic approach: how to study CSPs
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Closure properties: polymorphisms
Definition. A polymorphism of A is a function f : An → A such that for every relation RA we have

a1, . . . , an ∈ RA =⇒ f (a1, . . . , an) ∈ RA

(f (a11, . . . , an1 ), . . . , f (a1
r , . . . , an

r ))=
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∑
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∈
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∈
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10 01∈
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11Non-example:
R = {(1, 0), (0, 1)}
f = ∨ ̸∈

R
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Closure properties: polymorphisms
Definition. A polymorphism of A is a function f : An → A such that for every relation RA we have

a1, . . . , an ∈ RA =⇒ f (a1, . . . , an) ∈ RA

(f (a11, . . . , an1 ), . . . , f (a1
r , . . . , an

r ))=

Examples:• Cyclic orientations: both majority and minority



Antoine Mottet (TU Hamburg) 21

Closure properties: polymorphisms
Definition. A polymorphism of A is a function f : An → A such that for every relation RA we have

a1, . . . , an ∈ RA =⇒ f (a1, . . . , an) ∈ RA

• If h1, . . . , hn : X→ A are solutions, f ◦ (h1, . . . , hn) is a solution• Pol(A) is a clone (contains projections, closed under composition)• If R ⊆ Ar is pp-definable, then R is preserved by Pol(A)
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Closure properties: polymorphisms
Definition. A polymorphism of A is a function f : An → A such that for every relation RA we have

a1, . . . , an ∈ RA =⇒ f (a1, . . . , an) ∈ RA

• If h1, . . . , hn : X→ A are solutions, f ◦ (h1, . . . , hn) is a solution• Pol(A) is a clone (contains projections, closed under composition)• If R ⊆ Ar is pp-definable, then R is preserved by Pol(A)
definable by {∃, ∧}-formulaMotto:• Pol(A) "rich" ⇒ can use polymorphisms to narrow down search space

f (x, x, y) = f (x, y, x) = f (y, x, x) = f (x, x, x) or f (x, x, y) = f (x, y, x) = f (y, x, x) = f (y, y, y)
• Pol(A) "poor" ⇒ instances of CSP(A) can have complicated solution spaces

majority minority
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Polymorphisms and pp-definability
Theorem (Bodirsky, Nešetřil). Let A be ω-categorical and R ⊆ Ar .Then R is pp-definable in A iff R is preserved by Pol(A).
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Polymorphisms and pp-definability
Theorem (Bodirsky, Nešetřil). Let A be ω-categorical and R ⊆ Ar .Then R is pp-definable in A iff R is preserved by Pol(A).

a11

a1
r

a21

a2
r

an1

an
r

( )

( )
...... ...

• For B ⊆ An finite and a1, . . . , an ∈ Ar ,
{f (a1, . . . , an) | f : B→ A} is pp-definable a1 a2 an

b1 =

br =

· · ·

· · ·

= = =

Lemma. Let X be a finite structure, x1, . . . , xn ∈ X .There exists a pp-formula φX(x1, . . . , xn) such that for all A:
A |= φX(a1, . . . , an)⇐⇒ ∃h : X→ A∀i : h(xi) = ai
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Polymorphisms and pp-definability
Theorem (Bodirsky, Nešetřil). Let A be ω-categorical and R ⊆ Ar .Then R is pp-definable in A iff R is preserved by Pol(A).• For B ⊆ An finite and a1, . . . , an ∈ Ar ,
{f (a1, . . . , an) | f : B→ A} is pp-definable• φB defines R1 = {f (a1, . . . , an) | f : B→ A}

R1



Antoine Mottet (TU Hamburg) 22

Polymorphisms and pp-definability
Theorem (Bodirsky, Nešetřil). Let A be ω-categorical and R ⊆ Ar .Then R is pp-definable in A iff R is preserved by Pol(A).• For B ⊆ An finite and a1, . . . , an ∈ Ar ,
{f (a1, . . . , an) | f : B→ A} is pp-definable• φB defines R1 = {f (a1, . . . , an) | f : B→ A}• Subset of Ar closed under Aut(A)

R1
f (a1, . . . , an)

(α ◦ f )(a1, . . . , an)
(β ◦ f )(a1, . . . , an)
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• For some finite B, φB defines {f (a1, . . . , an) | f : An → A}
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• For some finite B, φB defines {f (a1, . . . , an) | f : An → A}• If a1, . . . , an generate R under Pol(A), this is exactly R
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i≥1 Ri ̸= ∅.This is the standard compactness argument.

R1

R2
R3

R4

R5
R6
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• For some finite B, φB defines {f (a1, . . . , an) | f : An → A}• If a1, . . . , an generate R under Pol(A), this is exactly R• We can always find finitely many generators, by ω-categoricity
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Polymorphisms and pp-definability
Theorem (Bodirsky, Nešetřil). Let A be ω-categorical and R ⊆ Ar .Then R is pp-definable in A iff R is preserved by Pol(A).
Corollary. If A is ω-categorical, the complexity of CSP(A) only depends on Pol(A).Pol(A) ⊆ Pol(B) =⇒ CSP(B) ≤P CSP(A)
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Polymorphisms and pp-definability
Theorem (Bodirsky, Nešetřil). Let A be ω-categorical and R ⊆ Ar .Then R is pp-definable in A iff R is preserved by Pol(A).
Corollary. If A is ω-categorical, the complexity of CSP(A) only depends on Pol(A).

This order is way too fine, no hope of understanding it all (already continuum many clones on {0, 1, 2})

all clones on a given set A all CSPs on A

Pol(A) ⊆ Pol(B) =⇒ CSP(B) ≤P CSP(A)

P

NP-hard
all operations

projections



Antoine Mottet (TU Hamburg) 22

Polymorphisms and pp-definability
Theorem (Bodirsky, Nešetřil). Let A be ω-categorical and R ⊆ Ar .Then R is pp-definable in A iff R is preserved by Pol(A).
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all clones on {0, 1} (Post)
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Polymorphisms and pp-definability
Theorem (Bodirsky, Nešetřil). Let A be ω-categorical and R ⊆ Ar .Then R is pp-definable in A iff R is preserved by Pol(A).
Corollary. If A is ω-categorical, the complexity of CSP(A) only depends on Pol(A).
Definition (Minion homomorphism). A map ξ : Pol(A)→ Pol(B)such that whenever f (vars) = g(vars′) in Pol(A), then
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Polymorphisms and pp-definability
Theorem (Bodirsky, Nešetřil). Let A be ω-categorical and R ⊆ Ar .Then R is pp-definable in A iff R is preserved by Pol(A).
Corollary. If A is ω-categorical, the complexity of CSP(A) only depends on Pol(A).
Definition (Minion homomorphism). A map ξ : Pol(A)→ Pol(B)such that whenever f (vars) = g(vars′) in Pol(A), then
ξ(f )(vars) = ξ(g)(vars′) in Pol(B).Maps preserving minor conditions:

Pol(A) ⊆ Pol(B) =⇒ CSP(B) ≤P CSP(A)

all clones on {0, 1} (Post)

f (x, x, y, z) = g(y, z, z, x)⇒ ξ(f )(x, x, y, z) = ξ(g)(y, z, z, x)
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Polymorphisms and pp-definability
Theorem (Bodirsky, Nešetřil). Let A be ω-categorical and R ⊆ Ar .Then R is pp-definable in A iff R is preserved by Pol(A).
Corollary. If A is ω-categorical, the complexity of CSP(A) only depends on Pol(A).
Definition (Minion homomorphism). A map ξ : Pol(A)→ Pol(B)such that whenever f (vars) = g(vars′) in Pol(A), then
ξ(f )(vars) = ξ(g)(vars′) in Pol(B).Maps preserving minor conditions:

Pol(A) ⊆ Pol(B) =⇒ CSP(B) ≤P CSP(A)

clones on {0, 1} up to →(Bodirsky, Vucaj)

f (x, x, y, z) = g(y, z, z, x)⇒ ξ(f )(x, x, y, z) = ξ(g)(y, z, z, x)
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Conjecture (Bodirsky, Pinsker). Let A be a reduct of a finitely bounded homogeneous structure.Suppose ∄ uniformly continuous minion homomorphism Pol(A)→ Pol(K3). Then CSP(A) is in P.
The conjecture (part 2)
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Pol(B1,A)
Pol(B2,A)
Pol(B3,A)
Pol(B4,A)

...

restr
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Pol(A)

The conjecture (part 2)

Pol(B1,A)
Pol(B2,A)
Pol(B3,A)
Pol(B4,A)

...

Pol(K3)restr
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Conjecture (Bodirsky, Pinsker). Let A be a reduct of a finitely bounded homogeneous structure.Suppose ∄ uniformly continuous minion homomorphism Pol(A)→ Pol(K3). Then CSP(A) is in P.

Pol(A)

The conjecture (part 2)

Pol(B1,A)
Pol(B2,A)
Pol(B3,A)
Pol(B4,A)

...

Pol(K3)

{f : Bn → A | n ≥ 1}Those are minions

restr
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Conjecture (Bodirsky, Pinsker). Let A be a reduct of a finitely bounded homogeneous structure.Suppose ∄ uniformly continuous minion homomorphism Pol(A)→ Pol(K3). Then CSP(A) is in P.

Pol(A)

The conjecture (part 2)
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Conjecture (Bodirsky, Pinsker). Let A be a reduct of a finitely bounded homogeneous structure.Suppose ∄ uniformly continuous minion homomorphism Pol(A)→ Pol(K3). Then CSP(A) is in P.

Pol(A)

The conjecture (part 2)

Pol(B1,A)
Pol(B2,A)
Pol(B3,A)
Pol(B4,A)

...

Pol(K3)

{f : Bn → A | n ≥ 1}Those are minions

restr

Why not directly maps Pol(A)→ Pol(K3)?

contains only unary functions
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Topology matters, maybe?
Theorem (Gillibert, Jonušas, Kompatscher, M., Pinsker).There exists an ω-categorical A with finite signature such that:• Pol(A) does not satisfy any non-trivial minor condition
⇝ ∃ minion homomorphism Pol(A)→ Pol(K3)• Pol(B,A) satisfies a non-trivial minor condition for every finite B ⊆ A
⇝ ∄ uniformly continuous minion homomorphism Pol(A)→ Pol(K3)

Disclaimer: A not subject to the dichotomy conjecture

Pol(A)
Pol(B1,A)
Pol(B2,A)
Pol(B3,A)

Pol(K3)
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Identities and complexity
Conjecture. No uniformly continuous minion homomorphism Pol(A)→ Pol(K3) implies CSP(A) in P.
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• Pol(A) has for some k ≥ 3 a weak near unanimity operation (Maróti, McKenzie)
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• Pol(A) has for all large prime n ≥ 3 a cyclic operation (Barto, Kozik)

c(x1, . . . , xn) ≈ c(x2, . . . , xn, x1)

Conjecture. No uniformly continuous minion homomorphism Pol(A)→ Pol(K3) implies CSP(A) in P.

=⇒ "CSP(A) ∈ P" expressible in existential second-order logic!
∃S ∀x, y, z : S(x, y, x, z, y, z) = S(y, x, z, x, z, y) ∧ S is a polymorphism
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Identities and complexity
Can one hope for such a nice characterization of P for infinite-domain CSPs?
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Theorem (Bodirsky, M., Olšák, Opršal, Pinsker, Willard). Let Σ be a minor condition.
∃ reduct A of a finitely bounded homogeneous structure such that:• Pol(A) satisfies some non-trivial minor condition• Pol(A) does not satisfy Σ• CSP(A) is definable in FO
Theorem (Gillibert, Kompatscher, Jonušas, M., Pinsker). Let C be a class of ω-categorical structuressuch that {CSP(A) | A ∈ C}:

Can one hope for such a nice characterization of P for infinite-domain CSPs?

We know Pol(A) characterizes the complexity of CSP(A), but we don’t know exactly why.

• contains the FO-definable CSPs,• does not intersect every Turing degree.Then C cannot be defined by existential second-order logiceven allowing countably-many existential quantifiers followed by countable disjunction of fo-formulas.
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Current research directions
Proving hardness of CSPs:• Idea: lift hardness from the finite label cover instances

v1v2

v1v3

v2v3

v1v2v3

Problem (Monochromatic triangle).• Input: A finite undirected graph G = (V , E)• Question: Does there exist a coloring
χ : E → {R, B} such that χ−1(c) is triangle-freefor every c ∈ {R, B}?

v1
v2

v3
⇝
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Current research directions
Proving hardness of CSPs:• Idea: lift hardness from the finite label cover instances• Requires extending partial homomorphisms Pol(A) ⇀ Pol(K3)

Proving tractability of CSPs:• If finite label cover instances are tractable, CSP(A) is tractable• Otherwise: need new algorithms?
– Order CSPs (Bodirsky, Kára)
– Phylogenetic CSPs (Aho, Sagiv, Symanski, Ullman)
– Hypergraph CSPs (M., Nagy, Pinsker)• Recent advances suggesting more connections with finite CSPs (M.) (M., Nagy)Connections with promise CSPs

• Theory of smooth approximations (M., Pinsker JACM’24)(M., Nagy, Pinsker, Wrona SICOMP’24)(M., Nagy, Pinsker ICALP’24)

• Definability: FO-definability, descriptive complexity• algorithmic transfers between CSPs and PCSPs• hardness transfers from CSPs to PCSPs
(M. CSL’24)(M. LICS’25)
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Connections with Promise CSPs
A→ C→ B
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Promise CSPs
Definition (Promise CSP). PCSP(A,B) is the problem to distinguish inputs X s.t.:
Yes: X→ A
No: X ̸→ B

A

B

Theorem (Brakensiek, Guruswami + Barto).PCSP(1in3, NAE) is:• solvable in polynomial time• not solvable by a finite-domain CSP

(Z; x + y + z = 1)

PCSP(Kk , Kℓ ): distinguish between graphs G that are• k-colorable (χ(G) ≤ k)• far from k-colorable (χ(G) > ℓ)
• Gets easier as the gap between k and ℓ grows• Conjectured to be NP-hard for all values of k ≤ ℓAlgorithms typically obtained by:• finding A→ C→ B such that CSP(C) is in P• sometimes, C must be infinite
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Promise CSPs
Definition (Promise CSP). PCSP(A,B) is the problem to distinguish inputs X s.t.:
Yes: X→ A
No: X ̸→ B
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Mod(Φ)

What about FO-separability?
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Promise CSPs
Definition (Promise CSP). PCSP(A,B) is the problem to distinguish inputs X s.t.:
Yes: X→ A
No: X ̸→ B

A

B

C

Theorem (essentially Rossman). The following are equivalent:• PCSP(A,B) FO-separable• there exists a finite C such that A→ C→ B and CSP(C) isFO-definable
Mod(Ψ)

What about FO-separability?
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Promise CSPs
Definition (Promise CSP). PCSP(A,B) is the problem to distinguish inputs X s.t.:
Yes: X→ A
No: X ̸→ B

A

B

Theorem (M.). There exist finite A,B such that:• PCSP(A,B) solvable by a Datalog program (∃+FP)• not solvable by a finite-domain CSP• solvable by a r.f.b.h. C, whose CSP is not solvable by aDatalog program
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Theorem (M.). There exist finite A,B such that:• PCSP(A,B) is not solvable in FPC• not solvable by a finite-domain CSP• solvable by a r.f.b.h. C
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Promise CSPs
Definition (Promise CSP). PCSP(A,B) is the problem to distinguish inputs X s.t.:
Yes: X→ A
No: X ̸→ B

A

B

Theorem (M.). There exist finite A,B such that:• PCSP(A,B) is not solvable in FPC• not solvable by a finite-domain CSP• solvable by a r.f.b.h. C
Many questions related to logical separability remain open
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Infinite CSPs as (infinite, finite)-PCSPs
Theorem (M.). Let B be a reduct of a finitely bounded homogeneous structure B∗.There exists A (infinite) and Bfin (finite) s.t. CSP(B) is ptime equivalent to PCSP(A,Bfin).
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Pol(B)
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Pol(A2,Bfin)
Pol(A3,Bfin)
Pol(A4,Bfin)

...
(∀A′ ⊂ A finite : Pol(A′,Bfin) |= Σ)⇐⇒ Pol(B) |= Σ mod Aut(B∗)

Corollary (Barto, Bulín, Opršal, Krokhin).If Pol(B) does not contain pseudo-Olšákoperations, then CSP(B) is NP-hard.
e1f (x, x, y, y, y, x) ≈ e2f (x, y, x, y, x, y) ≈ e3f (y, x, x, x, y, y)

Finite minions!
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Infinite CSPs as (infinite, finite)-PCSPs
Theorem (M.). Let B be a reduct of a finitely bounded homogeneous structure B∗.There exists A (infinite) and Bfin (finite) s.t. CSP(B) is ptime equivalent to PCSP(A,Bfin).

Pol(B)

Pol(A1,Bfin)
Pol(A2,Bfin)
Pol(A3,Bfin)
Pol(A4,Bfin)

...
(∀A′ ⊂ A finite : Pol(A′,Bfin) |= Σ)⇐⇒ Pol(B) |= Σ mod Aut(B∗)

Finite minions!

Corollary (Atserias, Dalmau). If Pol(B) does not containa pseudo-WNU of some arity k ≥ 3, then CSP(B) is notin Datalog.
e1w(x, . . . , x, x, y) ≈ e2w(x, . . . , x, y, x) ≈ · · · ≈ ekw(y, x, . . . , x)
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Infinite CSPs as (infinite, finite)-PCSPs
Theorem (M.). Let B be a reduct of a finitely bounded homogeneous structure B∗.There exists A (infinite) and Bfin (finite) s.t. CSP(B) is ptime equivalent to PCSP(A,Bfin).

Pol(B)

Pol(A1,Bfin)
Pol(A2,Bfin)
Pol(A3,Bfin)
Pol(A4,Bfin)

...
(∀A′ ⊂ A finite : Pol(A′,Bfin) |= Σ)⇐⇒ Pol(B) |= Σ mod Aut(B∗)

Finite minions!

Corollary (Barto, Bulín, Opršal, Krokhin). If Pol(B) doesnot contain a pseudo-Siggers operation, thenPCSP(K3,Kr) reduces to CSP(B).
u ◦ s(x, y, x, z, y, z) ≈ v ◦ s(y, x, z, x, z, y)
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Hardness of Monochromatic triangle
Problem (Monochromatic triangle). Following decision problem:
Input A finite undirected graph G = (V , E)
Question Does there exist a coloring χ : E → {R, B} such that χ−1(c) is triangle-free for every

c ∈ {R, B}?
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Hardness of Monochromatic triangle
Problem (Monochromatic triangle). Following decision problem:
Input A finite undirected graph G = (V , E)
Question Does there exist a coloring χ : E → {R, B} such that χ−1(c) is triangle-free for every

c ∈ {R, B}?
x1

x2
x3 x4

x5
x6

x7
x8

x9
x10

x6
x7

x5x1
x2x3

x4
⇝

Instance of Not-All-Equal Instance of monochromatic triangle

First attempt:
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c ∈ {R, B}?
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Instance of Not-All-Equal Instance of monochromatic triangle

First attempt:
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Problem (Monochromatic triangle). Following decision problem:
Input A finite undirected graph G = (V , E)
Question Does there exist a coloring χ : E → {R, B} such that χ−1(c) is triangle-free for every

c ∈ {R, B}?
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⇝

Instance of Not-All-Equal Instance of monochromatic triangle

First attempt:

The difference between NAE and Monochromatic Triangle:• In NAE: unrestricted use of ternary constraints• In Monochromatic triangle: ternary constraints (on edges) can only be imposed on triangles,and are automatically imposed on triangles
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c ∈ {R, B}?
x1

x2
x3 x4

x5
x6

x7
x8

x9
x10
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Instance of Not-All-Equal
The difference between NAE and Monochromatic Triangle:• In NAE: unrestricted use of ternary constraints• In Monochromatic triangle: ternary constraints (on edges) can only be imposed on triangles,and are automatically imposed on triangles
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Second attempt:
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Instance of Not-All-Equal
The difference between NAE and Monochromatic Triangle:• In NAE: unrestricted use of ternary constraints• In Monochromatic triangle: ternary constraints (on edges) can only be imposed on triangles,and are automatically imposed on triangles

x1
x5

x2
x4x3

x8
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x6Second attempt:
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x10
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Problem (Monochromatic triangle). Following decision problem:
Input A finite undirected graph G = (V , E)
Question Does there exist a coloring χ : E → {R, B} such that χ−1(c) is triangle-free for every
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G
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Second attempt:
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Hardness of Monochromatic triangle
Problem (Monochromatic triangle). Following decision problem:
Input A finite undirected graph G = (V , E)
Question Does there exist a coloring χ : E → {R, B} such that χ−1(c) is triangle-free for every

c ∈ {R, B}?
x1

x2
x3 x4

x5
x6

x7
x8

x9
x10
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Instance of Not-All-Equal

x1
x5

x2
x4x3

G
G

G

G

G
G

x8

x7
x6

G
G

G

G

G

Second attempt:
x9

x10
G

G

G

G

G

G

Intuition:• In the finite template, equality comes for free• equality allows one to use "structural"constraints as "normal" constraints



Antoine Mottet (TU Hamburg) 30

Hardness of Monochromatic triangle
Problem (Monochromatic triangle). Following decision problem:
Input A finite undirected graph G = (V , E)
Question Does there exist a coloring χ : E → {R, B} such that χ−1(c) is triangle-free for every

c ∈ {R, B}?
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Instance of Not-All-Equal
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Second attempt:
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Proposition (Barsukov, M., Perinti). MonochromaticTriangle remains hard on K4-free graphs.(The gadget is beautiful but too large to fit on this slide)


