
Rel: A Programming Language for Relational Data

FMT 2025

Wim Martens

RelationalAI
University of Bayreuth

Rel: A Programming Language for Relational Data

FMT 2025

Wim Martens

Molham Aref

Paolo Guagliardo

George Kastrinis

Leonid Libkin Victor Marsault

Liat Peterfreund
Mary McGrath

Filip MurlakNathaniel Nystrom

Allison Rogers
Cristina Sirangelo

Domagoj Vrgoč

David Zhao

Abdul Zreika
Special thanks:

Martin Bravenboer

RelationalAI

Rel: A Programming Language for Relational Data

FMT 2025

Wim Martens

Molham Aref

Paolo Guagliardo

George Kastrinis

Leonid Libkin Victor Marsault

Liat Peterfreund
Mary McGrath

Filip MurlakNathaniel Nystrom

Allison Rogers
Cristina Sirangelo

Domagoj Vrgoč

David Zhao

Abdul Zreika
Special thanks:

Martin Bravenboer

Academia
RelationalAI

Rel: A Programming Language for Relational Data

FMT 2025

Wim Martens

Molham Aref

Paolo Guagliardo

George Kastrinis

Leonid Libkin Victor Marsault

Liat Peterfreund
Mary McGrath

Filip MurlakNathaniel Nystrom

Allison Rogers
Cristina Sirangelo

Domagoj Vrgoč

David Zhao

Abdul Zreika
Special thanks:

Martin Bravenboer

Why I Think You Should Be Excited

Finite Model Theory Database Theory

Database Research Landscape

Theory Systems

Database Research Landscape

Theory Systems

divide
why?

Sets Bags
(Multisets)

Database Research Landscape

Theory Systems

divide
why?

What Can You Do, If…

…You Build a Database (and More) Engine
- From the ground up
- From the principles that the theory community believes are the right ones

- Set semantics!

???

Databases: The Origin Story

(Image: IBM, fair use)

1971:

Databases: The Origin Story

(Image: IBM, fair use)

1971:

SQL
is great!

What Goes Around Comes Around

Slide copied from Andy Pavlo

SQL
is great!

SQL
is bad!

What Goes Around Comes Around

Slide copied from Andy Pavlo

SQL
is great!

SQL
is bad!

What Goes Around Comes Around

Slide copied from Andy Pavlo

old

SQL
is great!

SQL
is bad!

What Goes Around Comes Around

Slide copied from Andy Pavlo

awkward
old

SQL
is great!

SQL
is bad!

What Goes Around Comes Around

Slide copied from Andy Pavlo

awkward
old

slow on graphs

SQL
is great!

SQL
is bad!

New startups
Lots of $$$

What Goes Around Comes Around

Slide copied from Andy Pavlo

awkward
old

slow on graphs

SQL
is great!

SQL
is bad!

New startups
Lots of $$$

SQL
adopts

new features

What Goes Around Comes Around

Slide copied from Andy Pavlo

awkward
old

slow on graphs

SQL
is great!

SQL
is bad!

New startups
Lots of $$$

SQL
adopts

new features

What Goes Around Comes Around

Slide copied from Andy Pavlo

awkward
old

slow on graphs

SQL
is great!

What Goes Around Comes Around

Expanding…

SQL
is great!

What Goes Around Comes Around

Expanding…

10 pages: Edgar Codd’s paper

SQL
is great!

What Goes Around Comes Around

Expanding…

10 pages: Edgar Codd’s paper
100 pages: first definition of SQL

SQL
is great!

What Goes Around Comes Around

Expanding…

10 pages: Edgar Codd’s paper
100 pages: first definition of SQL
1000 pages: SQL Foundation

SQL
is great!

What Goes Around Comes Around

Expanding…

10 pages: Edgar Codd’s paper
100 pages: first definition of SQL
1000 pages: SQL Foundation
4000 pages: SQL today

SQL
is great!

What Goes Around Comes Around

Expanding…

10 pages: Edgar Codd’s paper
100 pages: first definition of SQL

For perspective:
C standard — 400 pages

1000 pages: SQL Foundation
4000 pages: SQL today

SQL
is great!

What Goes Around Comes Around

Expanding…

10 pages: Edgar Codd’s paper
100 pages: first definition of SQL

For perspective:
C standard — 400 pages

1000 pages: SQL Foundation
4000 pages: SQL today Why?

SQL…
- is a sublanguage
- can’t do libraries

So We Asked Ourselves
Can we design…
…a query / programming language based on the tried and trusted DB principles
- being declarative
- using the relational model

- with set semantics (!)
but can do full-fledged programming, including libraries

This would be nice, because…

So We Asked Ourselves
Can we design…
…a query / programming language based on the tried and trusted DB principles
- being declarative
- using the relational model

- with set semantics (!)
but can do full-fledged programming, including libraries

This would be nice, because…

So We Asked Ourselves
Can we design…
…a query / programming language based on the tried and trusted DB principles
- being declarative
- using the relational model

- with set semantics (!)
but can do full-fledged programming, including libraries

Database engine
can do query optimization everywhere

(not just over the database part of applications)

This would be nice, because…

So We Asked Ourselves
Can we design…
…a query / programming language based on the tried and trusted DB principles
- being declarative
- using the relational model

- with set semantics (!)
but can do full-fledged programming, including libraries

Database engine
can do query optimization everywhere

(not just over the database part of applications)

Why is this a real advantage?

(https://www.instagram.com/uglybelgianhouses)

Solving the Impedance Mismatch

(https://www.instagram.com/uglybelgianhouses)

Solving the Impedance Mismatch

(https://www.instagram.com/uglybelgianhouses)

Database Business Logic

Solving the Impedance Mismatch

(https://www.instagram.com/uglybelgianhouses)

Database Business Logic

Solving the Impedance Mismatch

Query Language
- declarative
- (serious!) query optimization
- automatic parallelization
- automatic out-of-core computation
- …

(https://www.instagram.com/uglybelgianhouses)

Database Business Logic

Solving the Impedance Mismatch

General Purpose Language
- usually imperative
- invisible to your query optimizer

Query Language
- declarative
- (serious!) query optimization
- automatic parallelization
- automatic out-of-core computation
- …

Let’s bring this together!

(https://www.instagram.com/uglybelgianhouses)

Database Business Logic

Solving the Impedance Mismatch

General Purpose Language
- usually imperative
- invisible to your query optimizer

Query Language
- declarative
- (serious!) query optimization
- automatic parallelization
- automatic out-of-core computation
- …

Rel:
A Programming Language for Relational Data

Rel BasicsBase Relations
- person(x)
- mother(x,y)
- father(x,y)
- alive(x) def parent(x,y) : mother(x,y) or father(x,y)

the mother/father of x is y

}

Ingredients
- Datalog rules
- FO in the bodies

Rel code:

Rel BasicsBase Relations
- person(x)
- mother(x,y)
- father(x,y)
- alive(x) def parent(x,y) : mother(x,y) or father(x,y)

Quantifiers:

the mother/father of x is y

}

def grandparent(x,y) :
 exists ((z) | parent(x,z) and parent(z,y))

def orphan(x) :
 person(x) and forall ((p) | parent(x,p) implies not alive(p))

Ingredients
- Datalog rules
- FO in the bodies

Rel code:

Infinite Relations
Infinite Relations

- Int(x), …
- >, =, >=, …
- add(x,y,z), multiply(x,y,z), modulo(x,y,z), …

Safety of Rel is non-trivial [Guagliardo et al. ICDT 2025]

Infinite Relations
Infinite Relations

- Int(x), …
- >, =, >=, …
- add(x,y,z), multiply(x,y,z), modulo(x,y,z), …

Safety of Rel is non-trivial [Guagliardo et al. ICDT 2025]

def add_inverse(x,y) : add(x,y,0)

def add_inverse(x,y) : x + y = 0Equivalent:

Infinite Relations
Infinite Relations

- Int(x), …
- >, =, >=, …
- add(x,y,z), multiply(x,y,z), modulo(x,y,z), …

def absolute(x,y) : (x >= 0 and y = x) or (x < 0 and y = -x)

Safety of Rel is non-trivial [Guagliardo et al. ICDT 2025]

def add_inverse(x,y) : add(x,y,0)

def add_inverse(x,y) : x + y = 0Equivalent:

Rel Recursion

def ancestor(x,y) : parent(x,y)
def ancestor(x,y) : exists ((z) | parent(x,z) and ancestor(z,y))

(Also: non-linear recursion)

Warming up

What is added to enable programming in the large?

Four Extra Features
to enable Relational Programming

Four Extra Features

Tuple Variables

to enable Relational Programming

Four Extra Features

Tuple Variables Relation Variables

to enable Relational Programming

Four Extra Features

Tuple Variables Relation Variables

to enable Relational Programming

Relational Application

Four Extra Features

Tuple Variables Relation Variables

to enable Relational Programming

Relational Application Abstraction

Four Extra Features

Tuple Variables Relation Variables

to enable Relational Programming

Relational Application Abstraction

Details the paper⇝
So, let’s look at some code examples

Relational Algebra as a Library
How do we write generally applicable code?

1 2
3 4
3 5

U
1 2
6 7

V
Cartesian product

1 2 1 2
1 2 6 7
3 4 1 2
3 4 6 7
3 5 1 2
3 5 6 7

Relational Algebra as a Library
How do we write generally applicable code?

1 2
3 4
3 5

U
1 2
6 7

V
Cartesian product

1 2 1 2
1 2 6 7
3 4 1 2
3 4 6 7
3 5 1 2
3 5 6 7

def ProductUV {(a,b,c,d) : U(a,b) and V(c,d)}

Relational Algebra as a Library
How do we write generally applicable code?

1 2
3 4
3 5

U
1 2
6 7

V
Cartesian product

1 2 1 2
1 2 6 7
3 4 1 2
3 4 6 7
3 5 1 2
3 5 6 7

def ProductUV {(a,b,c,d) : U(a,b) and V(c,d)}

But what if V is ternary?

Relational Algebra as a Library
How do we write generally applicable code?

1 2
3 4
3 5

U
1 2
6 7

V
Cartesian product

1 2 1 2
1 2 6 7
3 4 1 2
3 4 6 7
3 5 1 2
3 5 6 7

def ProductUV {(a,b,c,d) : U(a,b) and V(c,d)}

But what if V is ternary?

def ProductUV {(a,b,c,d,e) : U(a,b) and V(c,d,e)}

Relational Algebra as a Library
How do we write generally applicable code?

1 2
3 4
3 5

U
1 2
6 7

V
Cartesian product

1 2 1 2
1 2 6 7
3 4 1 2
3 4 6 7
3 5 1 2
3 5 6 7

def ProductUV {(a,b,c,d) : U(a,b) and V(c,d)}

But what if V is ternary?

def ProductUV {(a,b,c,d,e) : U(a,b) and V(c,d,e)}

This is both tedious and not generally applicable. Solution:

Relational Algebra as a Library
How do we write generally applicable code?

1 2
3 4
3 5

U
1 2
6 7

V
Cartesian product

1 2 1 2
1 2 6 7
3 4 1 2
3 4 6 7
3 5 1 2
3 5 6 7

def ProductUV {(a,b,c,d) : U(a,b) and V(c,d)}

But what if V is ternary?

def ProductUV {(a,b,c,d,e) : U(a,b) and V(c,d,e)}

This is both tedious and not generally applicable. Solution:

def ProductUV {(x…,y…) : U(x…) and V(y…)}

Tuple variables bind to “sequences” of values (subtuples)

Relational Algebra as a Library
def ProductUV {(x…,y…) : U(x…) and V(y…)}

Relational Algebra as a Library
def ProductUV {(x…,y…) : U(x…) and V(y…)}

def ProductAB {(x…,y…) : A(x…) and B(y…)}

…

Relational Algebra as a Library
def ProductUV {(x…,y…) : U(x…) and V(y…)}

def ProductAB {(x…,y…) : A(x…) and B(y…)}❌…

Relational Algebra as a Library

Product[R,S] R S⇝ ×

def ProductUV {(x…,y…) : U(x…) and V(y…)}

def ProductAB {(x…,y…) : A(x…) and B(y…)}❌…

Relational Algebra as a Library

def Product[{A},{B}] : {(x…,y…) : A(x…) and B(y…)}Cartesian Product

relation variables

{

{tuple variables

Product[R,S] R S⇝ ×

def ProductUV {(x…,y…) : U(x…) and V(y…)}

def ProductAB {(x…,y…) : A(x…) and B(y…)}❌…

Intermezzo: “Everything is a Relation”
def Product({A},{B},x…,y…) :
 A(x…) and B(y…)

Intermezzo: “Everything is a Relation”

{0} {0} 0 0

{0} {(0,0)} 0 0 0

{(0,0)} {0} 0 0 0

…

{(0,0),(0,1)} {(1,2)} 0 0 1 2

{(0,0),(0,1)} {(1,2)} 0 1 1 2

…

Product

A second-order relation with
- infinitely many rows
- infinitely many columns

def Product({A},{B},x…,y…) :
 A(x…) and B(y…)

Intermezzo: “Everything is a Relation”

{0} {0} 0 0

{0} {(0,0)} 0 0 0

{(0,0)} {0} 0 0 0

…

{(0,0),(0,1)} {(1,2)} 0 0 1 2

{(0,0),(0,1)} {(1,2)} 0 1 1 2

…

Product

A second-order relation with
- infinitely many rows
- infinitely many columns

def Product({A},{B},x…,y…) :
 A(x…) and B(y…)

Observations
- Users are not exposed to higher-order relations

- the output is always first-order
- Relations in Rel don’t need a uniform arity

Partial Application

alice cindy
john debby
john bob

Parent

Product

Partial Application

alice cindy
john debby
john bob

Parent
Parent(“alice”,”cindy”)

Product

Partial Application

alice cindy
john debby
john bob

Parent
Parent(“alice”,”cindy”) true⇝

Product

Partial Application

alice cindy
john debby
john bob

Parent
Parent(“alice”,”cindy”)

Parent[“alice”]

 true⇝

Product

Partial Application

alice cindy
john debby
john bob

Parent
Parent(“alice”,”cindy”)

Parent[“alice”]

 true⇝

 “cindy”⇝ { }

Product

Partial Application

alice cindy
john debby
john bob

Parent
Parent(“alice”,”cindy”)

Parent[“alice”]

 true⇝

 “cindy”⇝ { }

Parent[“john”]

Product

Partial Application

alice cindy
john debby
john bob

Parent
Parent(“alice”,”cindy”)

Parent[“alice”]

 true⇝

 “cindy”⇝ { }

Parent[“john”] “debby”, “bob”⇝ { }

Product

Partial Application

alice cindy
john debby
john bob

Parent
Parent(“alice”,”cindy”)

Parent[“alice”]

 true⇝

 “cindy”⇝ { }

Parent[“john”] “debby”, “bob”⇝ { }

Product[U,V]

{0} {0} 0 0

{0} {(0,0)} 0 0 0

{(0,0)} {0} 0 0 0

…

{(0,0),(0,1)} {(1,2)} 0 0 1 2

{(0,0),(0,1)} {(1,2)} 0 1 1 2

…

Product

Partial Application

alice cindy
john debby
john bob

Parent
Parent(“alice”,”cindy”)

Parent[“alice”]

 true⇝

 “cindy”⇝ { }

Parent[“john”] “debby”, “bob”⇝ { }

Product[U,V] the Cartesian product of U and V⇝
{0} {0} 0 0

{0} {(0,0)} 0 0 0

{(0,0)} {0} 0 0 0

…

{(0,0),(0,1)} {(1,2)} 0 0 1 2

{(0,0),(0,1)} {(1,2)} 0 1 1 2

…

Product

Partial Application

alice cindy
john debby
john bob

Parent
Parent(“alice”,”cindy”)

Parent[“alice”]

 true⇝

 “cindy”⇝ { }

Parent[“john”] “debby”, “bob”⇝ { }

Product[U,V] the Cartesian product of U and V⇝

Product[U]
{0} {0} 0 0

{0} {(0,0)} 0 0 0

{(0,0)} {0} 0 0 0

…

{(0,0),(0,1)} {(1,2)} 0 0 1 2

{(0,0),(0,1)} {(1,2)} 0 1 1 2

…

Product

Partial Application

alice cindy
john debby
john bob

Parent
Parent(“alice”,”cindy”)

Parent[“alice”]

 true⇝

 “cindy”⇝ { }

Parent[“john”] “debby”, “bob”⇝ { }

Product[U,V] the Cartesian product of U and V⇝

Product[U] maps any V to the product of U and V⇝{0} {0} 0 0

{0} {(0,0)} 0 0 0

{(0,0)} {0} 0 0 0

…

{(0,0),(0,1)} {(1,2)} 0 0 1 2

{(0,0),(0,1)} {(1,2)} 0 1 1 2

…

Product

Partial Application

alice cindy
john debby
john bob

Parent
Parent(“alice”,”cindy”)

Parent[“alice”]

 true⇝

 “cindy”⇝ { }

Parent[“john”] “debby”, “bob”⇝ { }

Product[U,V] the Cartesian product of U and V⇝

Product[U] maps any V to the product of U and V⇝

Product[U][V]

{0} {0} 0 0

{0} {(0,0)} 0 0 0

{(0,0)} {0} 0 0 0

…

{(0,0),(0,1)} {(1,2)} 0 0 1 2

{(0,0),(0,1)} {(1,2)} 0 1 1 2

…

Product

Partial Application

alice cindy
john debby
john bob

Parent
Parent(“alice”,”cindy”)

Parent[“alice”]

 true⇝

 “cindy”⇝ { }

Parent[“john”] “debby”, “bob”⇝ { }

Product[U,V] the Cartesian product of U and V⇝

Product[U] maps any V to the product of U and V⇝

Product[U][V] the Cartesian product of U and V⇝

{0} {0} 0 0

{0} {(0,0)} 0 0 0

{(0,0)} {0} 0 0 0

…

{(0,0),(0,1)} {(1,2)} 0 0 1 2

{(0,0),(0,1)} {(1,2)} 0 1 1 2

…

Product

Partial Application

alice cindy
john debby
john bob

Parent
Parent(“alice”,”cindy”)

Parent[“alice”]

 true⇝

 “cindy”⇝ { }

Parent[“john”] “debby”, “bob”⇝ { }

Product[U,V] the Cartesian product of U and V⇝

Product[U] maps any V to the product of U and V⇝

def ProductU({V},x…) : Product(U,V,x…)

Product[U][V] the Cartesian product of U and V⇝

It looks like sugar…

{0} {0} 0 0

{0} {(0,0)} 0 0 0

{(0,0)} {0} 0 0 0

…

{(0,0),(0,1)} {(1,2)} 0 0 1 2

{(0,0),(0,1)} {(1,2)} 0 1 1 2

…

Product

Partial Application

alice cindy
john debby
john bob

Parent
Parent(“alice”,”cindy”)

Parent[“alice”]

 true⇝

 “cindy”⇝ { }

Parent[“john”] “debby”, “bob”⇝ { }

Product[U,V] the Cartesian product of U and V⇝

Product[U] maps any V to the product of U and V⇝

def ProductU({V},x…) : Product(U,V,x…)

Product[U][V] the Cartesian product of U and V⇝

It looks like sugar…

but it’s not:
Product[U] can occur as a subexpression with free variable U

{0} {0} 0 0

{0} {(0,0)} 0 0 0

{(0,0)} {0} 0 0 0

…

{(0,0),(0,1)} {(1,2)} 0 0 1 2

{(0,0),(0,1)} {(1,2)} 0 1 1 2

…

Product

All Pairs Shortest Path
def APSP({V},{E},x,y,0) : V(x) and V(y) and x = y
def APSP({V},{E},x,y,k) :
 exists ((z in V) | E(x,z) and APSP[V,E](z,y,k-1)) and
 and not exists ((j in Int) | j < k and APSP[V,E](x,y,j))

All Pairs Shortest Path

shortest path has length 0 :
x y

def APSP({V},{E},x,y,0) : V(x) and V(y) and x = y
def APSP({V},{E},x,y,k) :
 exists ((z in V) | E(x,z) and APSP[V,E](z,y,k-1)) and
 and not exists ((j in Int) | j < k and APSP[V,E](x,y,j))

All Pairs Shortest Path

=shortest path has length 0 :
x y

def APSP({V},{E},x,y,0) : V(x) and V(y) and x = y
def APSP({V},{E},x,y,k) :
 exists ((z in V) | E(x,z) and APSP[V,E](z,y,k-1)) and
 and not exists ((j in Int) | j < k and APSP[V,E](x,y,j))

All Pairs Shortest Path

=shortest path has length 0 :
x y

x y
shortest path has length :k

def APSP({V},{E},x,y,0) : V(x) and V(y) and x = y
def APSP({V},{E},x,y,k) :
 exists ((z in V) | E(x,z) and APSP[V,E](z,y,k-1)) and
 and not exists ((j in Int) | j < k and APSP[V,E](x,y,j))

All Pairs Shortest Path

=shortest path has length 0 :
x y

x y
zshortest path has length :k

def APSP({V},{E},x,y,0) : V(x) and V(y) and x = y
def APSP({V},{E},x,y,k) :
 exists ((z in V) | E(x,z) and APSP[V,E](z,y,k-1)) and
 and not exists ((j in Int) | j < k and APSP[V,E](x,y,j))

All Pairs Shortest Path

=shortest path has length 0 :
x y

x y
zshortest path has length :k

shortest path length k − 1

def APSP({V},{E},x,y,0) : V(x) and V(y) and x = y
def APSP({V},{E},x,y,k) :
 exists ((z in V) | E(x,z) and APSP[V,E](z,y,k-1)) and
 and not exists ((j in Int) | j < k and APSP[V,E](x,y,j))

All Pairs Shortest Path

=shortest path has length 0 :
x y

x y
zshortest path has length :k

shortest path length k − 1

❌
shortest path length < k

def APSP({V},{E},x,y,0) : V(x) and V(y) and x = y
def APSP({V},{E},x,y,k) :
 exists ((z in V) | E(x,z) and APSP[V,E](z,y,k-1)) and
 and not exists ((j in Int) | j < k and APSP[V,E](x,y,j))

All Pairs Shortest Path
def APSP({V},{E},x,y,0) : V(x) and V(y) and x = y
def APSP({V},{E},x,y,k) :
 exists ((z in V) | E(x,z) and APSP[V,E](z,y,k-1)) and
 and not exists ((j in Int) | j < k and APSP[V,E](x,y,j))

This becomes more succinct with
- aggregates
- abstraction

All Pairs Shortest Path
def APSP({V},{E},x,y,0) : V(x) and V(y) and x = y
def APSP({V},{E},x,y,k) :
 exists ((z in V) | E(x,z) and APSP[V,E](z,y,k-1)) and
 and not exists ((j in Int) | j < k and APSP[V,E](x,y,j))

This becomes more succinct with
- aggregates
- abstraction

def APSP({V},{E},x,y,0) : V(x) and V(y) and x = y
def APSP({V},{E},x,y,k) :
 k = min[{i : exists ((z in V) | E(x,z) and APSP[V,E](z,y,i-1))}]

abstractionaggregate

PageRank

def MatrixMult[{A},{B},i,j] : { sum[[k] : A[i,k]*B[k,j]] }

Step 1: Matrix multiplication

PageRank

def MatrixMult[{A},{B},i,j] : { sum[[k] : A[i,k]*B[k,j]] }

Step 1: Matrix multiplication
(A ⋅ B)ij = ∑

k

Aik ⋅ Bkj

PageRank

def MatrixMult[{A},{B},i,j] : { sum[[k] : A[i,k]*B[k,j]] }

Step 1: Matrix multiplication

def numberRows[{M}] : max[(k) : M(k,_,_)]
def vector[d,i,j] : 1/d where range(1,d,1,i) and j = 1

Step 2: Prelims

(A ⋅ B)ij = ∑
k

Aik ⋅ Bkj

PageRank

def MatrixMult[{A},{B},i,j] : { sum[[k] : A[i,k]*B[k,j]] }

Step 1: Matrix multiplication

def numberRows[{M}] : max[(k) : M(k,_,_)]
def vector[d,i,j] : 1/d where range(1,d,1,i) and j = 1

Step 2: Prelims

Step 3: PageRank

def PageRank[{G},0] : vector[numberRows[G]]
def PageRank[{G},k] : MatrixMult[G,PageRank[G,k-1]] where k > 0

(A ⋅ B)ij = ∑
k

Aik ⋅ Bkj

PageRank

def MatrixMult[{A},{B},i,j] : { sum[[k] : A[i,k]*B[k,j]] }

Step 1: Matrix multiplication

def numberRows[{M}] : max[(k) : M(k,_,_)]
def vector[d,i,j] : 1/d where range(1,d,1,i) and j = 1

Step 2: Prelims

Step 3: PageRank

def PageRank[{G},0] : vector[numberRows[G]]
def PageRank[{G},k] : MatrixMult[G,PageRank[G,k-1]] where k > 0

def output {PageRank[M,10]} 10 iterations of PageRank on matrix ⇝ M

(A ⋅ B)ij = ∑
k

Aik ⋅ Bkj

Rel is Handling Large Applications

Rel is Handling Large Applications
Rel in the Real World

- RelationalAI is actively using Rel with about a dozen customers
- Hundreds are inline

Rel is Handling Large Applications
Rel in the Real World

- RelationalAI is actively using Rel with about a dozen customers
- Hundreds are inline

- Rel models the semantics of the whole domain
- It is replacing arbitrary Java / C# code

Rel is Handling Large Applications
Rel in the Real World

- RelationalAI is actively using Rel with about a dozen customers
- Hundreds are inline

- Rel models the semantics of the whole domain
- It is replacing arbitrary Java / C# code

- Codebase becomes 20 - 50x smaller
- E.g. 800k lines of C# 15k lines of Rel
- 205k lines of C++ 9k lines of Rel

⇝
⇝

Rel is Handling Large Applications
Rel in the Real World

- RelationalAI is actively using Rel with about a dozen customers
- Hundreds are inline

- Rel models the semantics of the whole domain
- It is replacing arbitrary Java / C# code

- Codebase becomes 20 - 50x smaller
- E.g. 800k lines of C# 15k lines of Rel
- 205k lines of C++ 9k lines of Rel

⇝
⇝

- Performance goes up
- E.g. 1 month a few hours of processing time⇝

Rel is Handling Large Applications
Rel in the Real World

- RelationalAI is actively using Rel with about a dozen customers
- Hundreds are inline

- Rel models the semantics of the whole domain
- It is replacing arbitrary Java / C# code

- Codebase becomes 20 - 50x smaller
- E.g. 800k lines of C# 15k lines of Rel
- 205k lines of C++ 9k lines of Rel

⇝
⇝

- Performance goes up
- E.g. 1 month a few hours of processing time⇝

Application-wide optimization works!

Thanks!

Molham Aref, Paolo Guagliardo, George Kastrinis, Leonid Libkin, Victor Marsault,
Wim Martens, Mary McGrath, Filip Murlak, Nathaniel Nystrom, Liat Peterfreund,

Allison Rogers, Cristina Sirangelo, Domagoj Vrgoc, David Zhao, Abdul Zreika:

Rel: A Programming Language for Relational Data
To appear in SIGMOD 2025

ArXiv version:

