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Why I Think You Should Be Excited

Finite Model Theory Database Theory



Database Research Landscape

Theory Systems
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What Can You Do, If…

…You Build a Database (and More) Engine
- From the ground up 
- From the principles that the theory community believes are the right ones 

- Set semantics!

???



Databases: The Origin Story
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SQL 
is great!

What Goes Around Comes Around

Expanding…

10 pages: Edgar Codd’s paper
100 pages: first definition of SQL

For perspective: 
C standard — 400 pages

1000 pages: SQL Foundation
4000 pages: SQL today Why?

SQL… 
- is a sublanguage 
- can’t do libraries



So We Asked Ourselves
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…a query / programming language based on the tried and trusted DB principles 
-  being declarative 
-  using the relational model  

- with set semantics (!) 
but can do full-fledged programming, including libraries
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So We Asked Ourselves
Can we design…
…a query / programming language based on the tried and trusted DB principles 
-  being declarative 
-  using the relational model  

- with set semantics (!) 
but can do full-fledged programming, including libraries

Database engine
can do query optimization everywhere

(not just over the database part of applications)

Why is this a real advantage?
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Database Business Logic

Solving the Impedance Mismatch

General Purpose Language
- usually imperative 
- invisible to your query optimizer

Query Language
- declarative 
- (serious!) query optimization 
- automatic parallelization 
- automatic out-of-core computation 
- …



Let’s bring this together!
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Database Business Logic

Solving the Impedance Mismatch

General Purpose Language
- usually imperative 
- invisible to your query optimizer

Query Language
- declarative 
- (serious!) query optimization 
- automatic parallelization 
- automatic out-of-core computation 
- …



Rel: 
A Programming Language for Relational Data



Rel BasicsBase Relations
- person(x) 
- mother(x,y) 
- father(x,y)
- alive(x) def parent(x,y) : mother(x,y) or father(x,y)

the mother/father of x is y

}

Ingredients
- Datalog rules 
- FO in the bodies

Rel code:



Rel BasicsBase Relations
- person(x) 
- mother(x,y) 
- father(x,y)
- alive(x) def parent(x,y) : mother(x,y) or father(x,y)

Quantifiers:

the mother/father of x is y

}

def grandparent(x,y) :
      exists ((z) | parent(x,z) and parent(z,y))

def orphan(x) :
      person(x) and forall ((p) | parent(x,p) implies not alive(p))

Ingredients
- Datalog rules 
- FO in the bodies

Rel code:
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Infinite Relations
Infinite Relations

- Int(x), … 
- >, =, >=, …
- add(x,y,z),  multiply(x,y,z),   modulo(x,y,z), …

def absolute(x,y) : (x >= 0 and y = x) or (x < 0 and y = -x)

Safety of Rel is non-trivial [Guagliardo et al. ICDT 2025]

def add_inverse(x,y) : add(x,y,0)

def add_inverse(x,y) : x + y = 0Equivalent:



Rel Recursion

def ancestor(x,y) : parent(x,y)
def ancestor(x,y) : exists ((z) | parent(x,z) and ancestor(z,y))

(Also: non-linear recursion)



Warming up

What is added to enable programming in the large?
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Four Extra Features

Tuple Variables Relation Variables

to enable Relational Programming

Relational Application Abstraction

Details  the paper⇝
So, let’s look at some code examples
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Relational Algebra as a Library
How do we write generally applicable code?

1 2
3 4
3 5

U
1 2
6 7

V
Cartesian product

1 2 1 2
1 2 6 7
3 4 1 2
3 4 6 7
3 5 1 2
3 5 6 7

def ProductUV {(a,b,c,d) : U(a,b) and V(c,d)}

But what if V is ternary?

def ProductUV {(a,b,c,d,e) : U(a,b) and V(c,d,e)}

This is both tedious and not generally applicable. Solution:

def ProductUV {(x…,y…) : U(x…) and V(y…)}

Tuple variables bind to “sequences” of values (subtuples)
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Relational Algebra as a Library

def Product[{A},{B}] : {(x…,y…) : A(x…) and B(y…)}Cartesian Product

relation variables

{

{tuple variables

Product[R,S]  R  S⇝ ×

def ProductUV {(x…,y…) : U(x…) and V(y…)}

def ProductAB {(x…,y…) : A(x…) and B(y…)}❌…
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Intermezzo: “Everything is a Relation”

{0} {0} 0 0

{0} {(0,0)} 0 0 0

{(0,0)} {0} 0 0 0

…

{(0,0),(0,1)} {(1,2)} 0 0 1 2

{(0,0),(0,1)} {(1,2)} 0 1 1 2

…

Product

A second-order relation with 
- infinitely many rows 
- infinitely many columns

def Product({A},{B},x…,y…) : 
                   A(x…) and B(y…)

Observations
- Users are not exposed to higher-order relations 

- the output is always first-order
- Relations in Rel don’t need a uniform arity
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def ProductU({V},x…) : Product(U,V,x…)

Product[U][V]  the Cartesian product of U and V⇝

It looks like sugar…

{0} {0} 0 0

{0} {(0,0)} 0 0 0

{(0,0)} {0} 0 0 0

…

{(0,0),(0,1)} {(1,2)} 0 0 1 2

{(0,0),(0,1)} {(1,2)} 0 1 1 2

…

Product



Partial Application

alice cindy
john debby
john bob

Parent
Parent(“alice”,”cindy”)

Parent[“alice”]

 true⇝

 “cindy”⇝ { }

Parent[“john”]  “debby”, “bob”⇝ { }

Product[U,V]  the Cartesian product of U and V⇝

Product[U]  maps any V to the product of U and V⇝

def ProductU({V},x…) : Product(U,V,x…)

Product[U][V]  the Cartesian product of U and V⇝

It looks like sugar…

but it’s not:  
Product[U] can occur as a subexpression with free variable U

{0} {0} 0 0

{0} {(0,0)} 0 0 0

{(0,0)} {0} 0 0 0

…

{(0,0),(0,1)} {(1,2)} 0 0 1 2

{(0,0),(0,1)} {(1,2)} 0 1 1 2

…

Product
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All Pairs Shortest Path
def APSP({V},{E},x,y,0) : V(x) and V(y) and x = y
def APSP({V},{E},x,y,k) : 
         exists ((z in V) | E(x,z) and APSP[V,E](z,y,k-1)) and 
         and not exists ((j in Int) | j < k and APSP[V,E](x,y,j))

This becomes more succinct with 
- aggregates  
- abstraction

def APSP({V},{E},x,y,0) : V(x) and V(y) and x = y
def APSP({V},{E},x,y,k) : 
         k = min[{i : exists ((z in V) | E(x,z) and APSP[V,E](z,y,i-1))}]

abstractionaggregate
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PageRank

def MatrixMult[{A},{B},i,j] : { sum[[k] : A[i,k]*B[k,j]] }

Step 1: Matrix multiplication

def numberRows[{M}] : max[(k) : M(k,_,_)]
def vector[d,i,j]  : 1/d where range(1,d,1,i) and j = 1

Step 2: Prelims

Step 3: PageRank

def PageRank[{G},0] : vector[numberRows[G]]
def PageRank[{G},k] : MatrixMult[G,PageRank[G,k-1]] where k > 0
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PageRank

def MatrixMult[{A},{B},i,j] : { sum[[k] : A[i,k]*B[k,j]] }

Step 1: Matrix multiplication

def numberRows[{M}] : max[(k) : M(k,_,_)]
def vector[d,i,j]  : 1/d where range(1,d,1,i) and j = 1

Step 2: Prelims

Step 3: PageRank

def PageRank[{G},0] : vector[numberRows[G]]
def PageRank[{G},k] : MatrixMult[G,PageRank[G,k-1]] where k > 0

def output {PageRank[M,10]}  10 iterations of PageRank on matrix ⇝ M

(A ⋅ B)ij = ∑
k

Aik ⋅ Bkj
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- RelationalAI is actively using Rel with about a dozen customers 
- Hundreds are inline

- Rel models the semantics of the whole domain 
- It is replacing arbitrary Java / C# code

- Codebase becomes 20 - 50x smaller 
- E.g. 800k lines of C#       15k lines of Rel 
-          205k lines of C++      9k lines of Rel 

⇝
⇝

- Performance goes up 
- E.g. 1 month  a few hours of processing time⇝

Application-wide optimization works!
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