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Constraint Satisfaction Problems

• CSPs provide a general framework work for many decision problems
• A CSP is defined by a relational structure A (called template)

CSP(A) =
{

B
∣∣ B has a homomorphism to A

}
• CSPs can be seen has a homomorphism problem or as a constraint system

G

?→

K3

• dichotomy: CSP(A) is NP-complete or polynomial-time decidable (Bulatov, Zhuk)
• Is there a universal algorithm (polynomial in |A|,|B|) for polynomial-time CSPs?
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Integer Linear System Formulation of CSPs
Encode existence of a global homomorphism B → A.

Let k be at least the arity of A.

Variable xf for every partial homomorphism f : B[X ] → A for |X | ≤ k
Equations for all X ⊆ Y of size at most k and homorphisms f : B[X ] → A:

xf ∈ {0, 1} is f used in global homomorphism?∑
hom f : B[X ]→A

xf = 1 X is uniquely mapped to A

∑
hom f : B[X ]→A

g |Y =g

xg = xf f has a unique extension to Y

• {0, 1} integral system solvale ⇔ B ∈ CSP(A)
• k-BIP: [0, 1] rational relaxation 0 ≤ xf ≤ 1
• k-AIP: affine integral relaxation xf ∈ Z
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Combining k-Consistency with the Affine Integer Relaxation

The Z-Affine k-Consistency Algorithm (Dalmau and Opršal, 2024)
1. Run the k-consistency algorithm to discard some partial homomorphisms
2. Refine the affine relaxation k-AIP by xf = 0 for all discarded f : B[X ] → A
3. Accept if refined system is solvable, reject otherwise.

Conjecture(Dalmau and Opršal, 2024)
For every finite template A,

1. there is some k such that the Z-affine k-consistency algorithm solves CSP(A), or
2. CSP(K3) is Datalog∪-reducible to CSP(A).
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A Construction from Graph Isomorphism

Theorem (Berkholz and Grohe, 2016)
There is an infinite family of unsatisfiable systems of linear equations over Z2 × Z3
with one special constraint x ∈ {(1, 0), (0, 1)} such that
for all k and large enough systems the integral relaxation k-AIP has an solution.

Analysis of the Proof
• instances: disjunction of two systems of linear equations over Z2 and Z3
• solutions are nonzero only for partial homomorphisms not discarded by

k-consistency ⇒ Z-affine k-consistency accepts
• special constraint makes the template NP-complete

How to get a polynomial-time template?
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Theorem (L., Pago)
For all k, the Z-affine k-consistency algorithm does not solve CSP(Sym(18)).
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Refuting the Conjecture: Homomorphism-Or Construction

Theorem (L., Pago)
1. For all k, the Z-affine k-consistency algorithm does not solve CSP(OR(Z2,Z3)).
2. CSP(K3) is not Datalog∪-reducible to CSP(OR(Z2,Z3)).
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The Z-Affine CSP-Algorithm Zoo

There are more CSP-algorithms combining combinatorial approaches with solving
Z-linear systems:

Open Problem
• polynomial-time counterexample for cohomological k-consistency?
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