Limitations of Affine Integer Relaxations for Solving Constraint Satisfaction Problems

Moritz Lichter, Benedikt Pago

May 28, 2025

• CSPs provide a general framework work for many decision problems

- CSPs provide a general framework work for many decision problems
- A CSP is defined by a relational structure A (called template)

- CSPs provide a general framework work for many decision problems
- A CSP is defined by a relational structure A (called template)

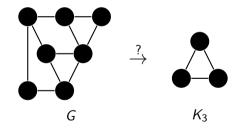
 $CSP(A) = \{ B \mid B \text{ has a homomorphism to } A \}$

- CSPs provide a general framework work for many decision problems
- A CSP is defined by a relational structure A (called template)

 $CSP(A) = \{ B \mid B \text{ has a homomorphism to } A \}$

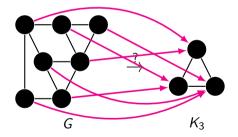
- CSPs provide a general framework work for many decision problems
- A CSP is defined by a relational structure A (called template)

 $CSP(A) = \{ B \mid B \text{ has a homomorphism to } A \}$



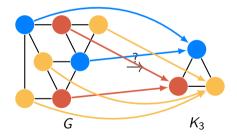
- CSPs provide a general framework work for many decision problems
- A CSP is defined by a relational structure A (called template)

 $CSP(A) = \{ B \mid B \text{ has a homomorphism to } A \}$



- CSPs provide a general framework work for many decision problems
- A CSP is defined by a relational structure A (called template)

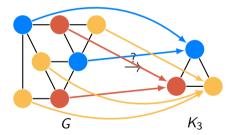
 $CSP(A) = \{ B \mid B \text{ has a homomorphism to } A \}$



- CSPs provide a general framework work for many decision problems
- A CSP is defined by a relational structure A (called template)

 $CSP(A) = \{ B \mid B \text{ has a homomorphism to } A \}$

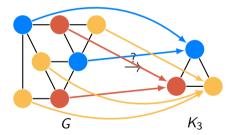
• CSPs can be seen has a homomorphism problem or as a constraint system



• dichotomy: CSP(A) is NP-complete or polynomial-time decidable (Bulatov, Zhuk)

- CSPs provide a general framework work for many decision problems
- A CSP is defined by a relational structure A (called template)

 $CSP(A) = \{ B \mid B \text{ has a homomorphism to } A \}$



- dichotomy: CSP(A) is NP-complete or polynomial-time decidable (Bulatov, Zhuk)
- Is there a universal algorithm (polynomial in |A|, |B|) for polynomial-time CSPs?

Encode existence of a global homomorphism $B \rightarrow A$.

Encode existence of a global homomorphism $B \rightarrow A$. Let k be at least the arity of A.

Encode existence of a global homomorphism $B \to A$. Let k be at least the arity of A. Variable x_f for every partial homomorphism $f : B[X] \to A$ for $|X| \le k$

Encode existence of a global homomorphism $B \rightarrow A$. Let k be at least the arity of A.

Variable x_f for every partial homomorphism $f: B[X] \to A$ for $|X| \le k$ Equations for all $X \subseteq Y$ of size at most k and homorphisms $f: B[X] \to A$:

$$\begin{array}{ll} x_{f} \in \{0,1\} & \text{is } f \text{ used in global homomorphism}? \\ \sum_{\substack{\text{hom } f: B[X] \to A}} x_{f} = 1 & X \text{ is uniquely mapped to } A \\ \sum_{\substack{\text{hom } f: B[X] \to A \\ g|_{Y} = g}} x_{g} = x_{f} & f \text{ has a unique extension to } Y \end{array}$$

Encode existence of a global homomorphism $B \rightarrow A$. Let k be at least the arity of A.

Variable x_f for every partial homomorphism $f: B[X] \to A$ for $|X| \le k$ Equations for all $X \subseteq Y$ of size at most k and homorphisms $f: B[X] \to A$:

	$x_f \in \{0,1\}$	is f used in global homomorphism?		
\sum	$x_f = 1$	X is uniquely mapped to A		
hom $f : B[X]$	A			
\sum	$x_g = x_f$	f has a unique extension to Y		
hom $f: B[X] \rightarrow A$				
$g _{Y}=g$				

• $\{0,1\}$ integral system solvale $\Leftrightarrow B \in \mathsf{CSP}(A)$

Encode existence of a global homomorphism $B \rightarrow A$. Let k be at least the arity of A.

Variable x_f for every partial homomorphism $f: B[X] \to A$ for $|X| \le k$ Equations for all $X \subseteq Y$ of size at most k and homorphisms $f: B[X] \to A$:

	$x_f \in \{0,1\}$	is f used in global homomorphism?		
\sum	$x_f = 1$	X is uniquely mapped to A		
hom $f : B[X]$	A			
	$x_g = x_f$	f has a unique extension to Y		
hom $f: B[X] \rightarrow A$				
$g _Y=g$				

- $\{0,1\}$ integral system solvale $\Leftrightarrow B \in \mathsf{CSP}(A)$
- *k*-BIP: [0, 1] rational relaxation $0 \le x_f \le 1$

Encode existence of a global homomorphism $B \rightarrow A$. Let k be at least the arity of A.

Variable x_f for every partial homomorphism $f: B[X] \to A$ for $|X| \le k$ Equations for all $X \subseteq Y$ of size at most k and homorphisms $f: B[X] \to A$:

	$x_f \in \{0,1\}$	is f used in global homomorphism?		
\sum	$x_f = 1$	X is uniquely mapped to A		
hom $f: B[X] \rightarrow A$				
\sum	+	f has a unique extension to Y		
hom $f: B[X] \rightarrow A$				
$g _Y = g$				

- $\{0,1\}$ integral system solvale $\Leftrightarrow B \in \mathsf{CSP}(A)$
- *k*-BIP: [0, 1] rational relaxation $0 \le x_f \le 1$
- *k*-AIP: affine integral relaxation $x_f \in \mathbb{Z}$

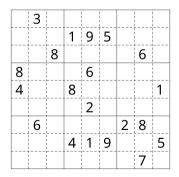
The \mathbb{Z} -Affine k-Consistency Algorithm (Dalmau and Opršal, 2024)

The \mathbb{Z} -Affine *k*-Consistency Algorithm (Dalmau and Opršal, 2024)

1. Run the *k*-consistency algorithm to discard some partial homomorphisms

The \mathbb{Z} -Affine *k*-Consistency Algorithm (Dalmau and Opršal, 2024)

1. Run the k-consistency algorithm to discard some partial homomorphisms



The \mathbb{Z} -Affine *k*-Consistency Algorithm (Dalmau and Opršal, 2024)

- 1. Run the k-consistency algorithm to discard some partial homomorphisms
- 2. Refine the affine relaxation k-AIP by $x_f = 0$ for all discarded $f : B[X] \to A$

The \mathbb{Z} -Affine *k*-Consistency Algorithm (Dalmau and Opršal, 2024)

- 1. Run the k-consistency algorithm to discard some partial homomorphisms
- 2. Refine the affine relaxation k-AIP by $x_f = 0$ for all discarded $f : B[X] \to A$
- 3. Accept if refined system is solvable, reject otherwise.

The \mathbb{Z} -Affine *k*-Consistency Algorithm (Dalmau and Opršal, 2024)

- 1. Run the k-consistency algorithm to discard some partial homomorphisms
- 2. Refine the affine relaxation k-AIP by $x_f = 0$ for all discarded $f : B[X] \to A$
- 3. Accept if refined system is solvable, reject otherwise.

Conjecture(Dalmau and Opršal, 2024) For every finite template *A*,

The \mathbb{Z} -Affine k-Consistency Algorithm (Dalmau and Opršal, 2024)

- 1. Run the k-consistency algorithm to discard some partial homomorphisms
- 2. Refine the affine relaxation k-AIP by $x_f = 0$ for all discarded $f : B[X] \to A$
- 3. Accept if refined system is solvable, reject otherwise.

Conjecture(Dalmau and Opršal, 2024)

For every finite template A,

1. there is some k such that the \mathbb{Z} -affine k-consistency algorithm solves CSP(A),

The \mathbb{Z} -Affine k-Consistency Algorithm (Dalmau and Opršal, 2024)

- 1. Run the k-consistency algorithm to discard some partial homomorphisms
- 2. Refine the affine relaxation k-AIP by $x_f = 0$ for all discarded $f : B[X] \to A$
- 3. Accept if refined system is solvable, reject otherwise.

Conjecture(Dalmau and Opršal, 2024)

For every finite template A,

- 1. there is some k such that the \mathbb{Z} -affine k-consistency algorithm solves CSP(A), or
- 2. $CSP(K_3)$ is Datalog^U-reducible to CSP(A).

Theorem (Berkholz and Grohe, 2016) There is an infinite family of unsatisfiable systems of linear equations over $\mathbb{Z}_2 \times \mathbb{Z}_3$

Theorem (Berkholz and Grohe, 2016)

There is an infinite family of unsatisfiable systems of linear equations over $\mathbb{Z}_2 \times \mathbb{Z}_3$ with one special constraint $x \in \{(1,0), (0,1)\}$

Theorem (Berkholz and Grohe, 2016)

There is an infinite family of unsatisfiable systems of linear equations over $\mathbb{Z}_2 \times \mathbb{Z}_3$ with one special constraint $x \in \{(1,0), (0,1)\}$ such that for all k and large enough systems the integral relaxation k-AIP has an solution.

Theorem (Berkholz and Grohe, 2016)

There is an infinite family of unsatisfiable systems of linear equations over $\mathbb{Z}_2 \times \mathbb{Z}_3$ with one special constraint $x \in \{(1,0), (0,1)\}$ such that for all k and large enough systems the integral relaxation k-AIP has an solution.

Theorem (Berkholz and Grohe, 2016)

There is an infinite family of unsatisfiable systems of linear equations over $\mathbb{Z}_2 \times \mathbb{Z}_3$ with one special constraint $x \in \{(1,0), (0,1)\}$ such that for all k and large enough systems the integral relaxation k-AIP has an solution.

Analysis of the Proof

• instances: disjunction of two systems of linear equations over \mathbb{Z}_2 and \mathbb{Z}_3

Theorem (Berkholz and Grohe, 2016)

There is an infinite family of unsatisfiable systems of linear equations over $\mathbb{Z}_2 \times \mathbb{Z}_3$ with one special constraint $x \in \{(1,0), (0,1)\}$ such that for all k and large enough systems the integral relaxation k-AIP has an solution.

- instances: disjunction of two systems of linear equations over \mathbb{Z}_2 and \mathbb{Z}_3
- solutions are nonzero only for partial homomorphisms not discarded by *k*-consistency

Theorem (Berkholz and Grohe, 2016)

There is an infinite family of unsatisfiable systems of linear equations over $\mathbb{Z}_2 \times \mathbb{Z}_3$ with one special constraint $x \in \{(1,0), (0,1)\}$ such that for all k and large enough systems the integral relaxation k-AIP has an solution.

- instances: disjunction of two systems of linear equations over \mathbb{Z}_2 and \mathbb{Z}_3
- solutions are nonzero only for partial homomorphisms not discarded by k-consistency ⇒ Z-affine k-consistency accepts

Theorem (Berkholz and Grohe, 2016)

There is an infinite family of unsatisfiable systems of linear equations over $\mathbb{Z}_2 \times \mathbb{Z}_3$ with one special constraint $x \in \{(1,0), (0,1)\}$ such that for all k and large enough systems the integral relaxation k-AIP has an solution.

- instances: disjunction of two systems of linear equations over \mathbb{Z}_2 and \mathbb{Z}_3
- solutions are nonzero only for partial homomorphisms not discarded by k-consistency ⇒ Z-affine k-consistency accepts
- special constraint makes the template NP-complete

A Construction from Graph Isomorphism

Theorem (Berkholz and Grohe, 2016)

There is an infinite family of unsatisfiable systems of linear equations over $\mathbb{Z}_2 \times \mathbb{Z}_3$ with one special constraint $x \in \{(1,0), (0,1)\}$ such that for all k and large enough systems the integral relaxation k-AIP has an solution.

Analysis of the Proof

- instances: disjunction of two systems of linear equations over \mathbb{Z}_2 and \mathbb{Z}_3
- solutions are nonzero only for partial homomorphisms not discarded by k-consistency ⇒ Z-affine k-consistency accepts
- special constraint makes the template NP-complete

How to get a polynomial-time template?

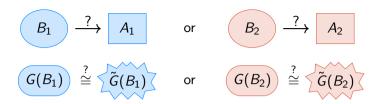
Reduction to a Polynomial-Time Template

disjunction of equation systems

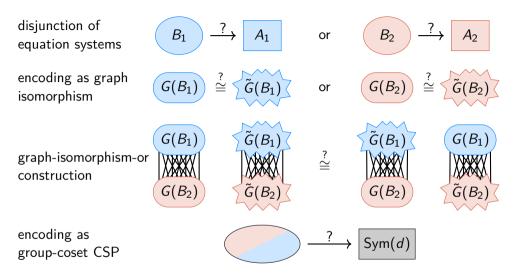
$$B_1 \xrightarrow{?} A_1$$
 or $B_2 \xrightarrow{?} A_2$

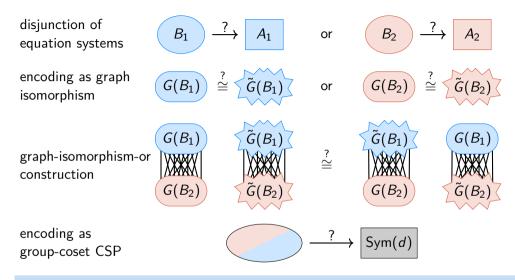
disjunction of equation systems

encoding as graph isomorphism



disjunction of ? ? B_1 A_1 or B_2 A_2 equation systems encoding as graph ? ? $G(B_1)$ $\tilde{G}(B_1)$ $G(B_2)$ $\tilde{G}(B_2)$ or isomorphism $\tilde{G}(B_1)$ $\tilde{G}(B_1)$ $G(B_1)$ $G(B_1)$? graph-isomorphism-or VMM/ construction $G(B_2)$ $\tilde{G}(B_2)$ $G(B_2)$ $\tilde{G}(B_2)$

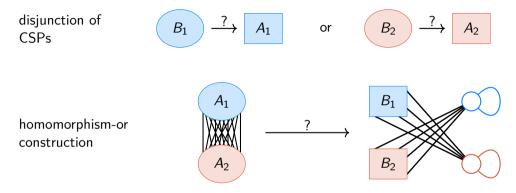


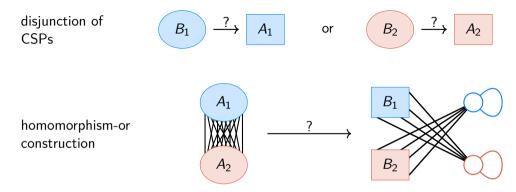


Theorem (L., Pago)

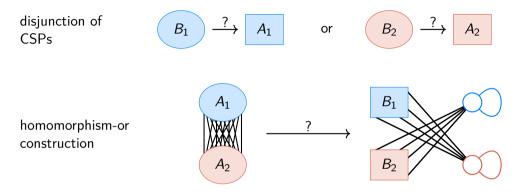
For all k, the \mathbb{Z} -affine k-consistency algorithm does not solve CSP(Sym(18)).

disjunction of
$$B_1 \xrightarrow{?} A_1$$
 or $B_2 \xrightarrow{?} A_2$
CSPs





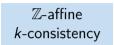
Theorem (L., Pago) 1. For all k, the \mathbb{Z} -affine k-consistency algorithm does not solve $CSP(OR(\mathbb{Z}_2, \mathbb{Z}_3))$.

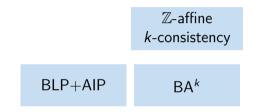


Theorem (L., Pago)

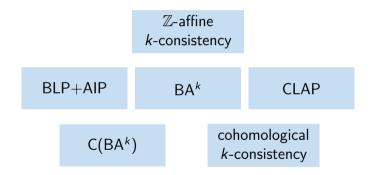
- 1. For all k, the \mathbb{Z} -affine k-consistency algorithm does not solve $CSP(OR(\mathbb{Z}_2,\mathbb{Z}_3))$.
- 2. $CSP(K_3)$ is not Datalog^U-reducible to $CSP(OR(\mathbb{Z}_2, \mathbb{Z}_3))$.

The \mathbb{Z} -Affine CSP-Algorithm \mathbb{Z} oo

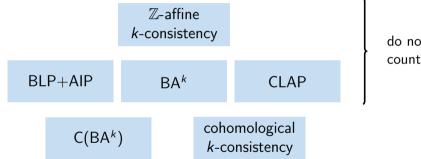




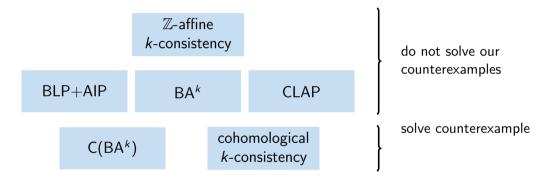




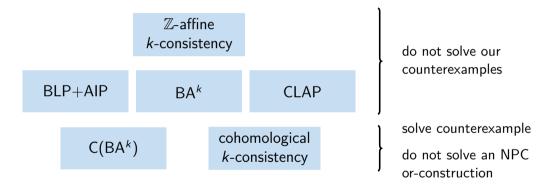
There are more CSP-algorithms combining combinatorial approaches with solving $\mathbb{Z}\text{-linear systems:}$



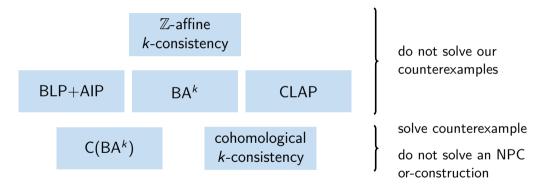
do not solve our counterexamples



The \mathbb{Z} -Affine CSP-Algorithm \mathbb{Z} oo



There are more CSP-algorithms combining combinatorial approaches with solving $\mathbb{Z}\text{-linear systems:}$



Open Problem

• polynomial-time counterexample for cohomological k-consistency?