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® A CSP is defined by a relational structure A (called template)
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® CSPs provide a general framework work for many decision problems
® A CSP is defined by a relational structure A (called template)

CSP(A) = { B | B has a homomorphism to A }

® CSPs can be seen has a homomorphism problem or as a constraint system

—
A
_‘__»/'._
G K3

e dichotomy: CSP(A) is NP-complete or polynomial-time decidable (Bulatov, Zhuk)
® |Is there a universal algorithm (polynomial in |Al,|B|) for polynomial-time CSPs?
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Integer Linear System Formulation of CSPs
Encode existence of a global homomorphism B — A. Let k be at least the arity of A.

Variable x¢ for every partial homomorphism f: B[X] — A for | X| < k
Equations for all X C Y of size at most k and homorphisms f: B[X] — A:

xf € {0,1} is f used in global homomorphism?
Z xr=1 X is uniquely mapped to A
hom f: B[X]—A
Z Xg = Xf f has a unique extension to Y
hom f: B[X]—A
gly=g

e {0,1} integral system solvale & B € CSP(A)
® k-BIP: [0, 1] rational relaxation 0<xr<1
® k-AlP: affine integral relaxation Xr € 7
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The Z-Affine k-Consistency Algorithm (Dalmau and Oprsal, 2024)

1. Run the k-consistency algorithm to discard some partial homomorphisms
2. Refine the affine relaxation k-AIP by xf = 0 for all discarded f: B[X] — A

3. Accept if refined system is solvable, reject otherwise.

Conjecture(Dalmau and Oprsal, 2024)
For every finite template A,

1. there is some k such that the Z-affine k-consistency algorithm solves CSP(A), or
2. CSP(K3) is Datalog“-reducible to CSP(A).
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A Construction from Graph Isomorphism

Theorem (Berkholz and Grohe, 2016)

There is an infinite family of unsatisfiable systems of linear equations over Zy x Zs3
with one special constraint x € {(1,0),(0,1)} such that

for all k and large enough systems the integral relaxation k-AlIP has an solution.

Analysis of the Proof
® instances: disjunction of two systems of linear equations over Z, and Z3

® solutions are nonzero only for partial homomorphisms not discarded by
k-consistency = 7Z-affine k-consistency accepts

® special constraint makes the template NP-complete

How to get a polynomial-time template?
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Reduction to a Polynomial-Time Template
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Reduction to a Polynomial-Time Template

disjunction of
equation systems

Iz

Ay or <B2> 5 A

encoding as graph
isomorphism

1~

graph-isomorphism-or
construction

encoding as ?
group-coset CSP

Theorem (L., Pago)

For all k, the Z-affine k-consistency algorithm does not solve CSP(Sym(18)).
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Refuting the Conjecture: Homomorphism-Or Construction
disjunction of L> A or _?> A
CSPs ' 2
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homomorphism-or
construction

B>

Theorem (L., Pago)
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Refuting the Conjecture: Homomorphism-Or Construction
disjunction of L> A or _?> A
CSPs ' 2

By

homomorphism-or
construction

B>

Theorem (L., Pago)
1. For all k, the Z-affine k-consistency algorithm does not solve CSP(OR(Z5, Z3)).
2. CSP(K3) is not Datalog"-reducible to CSP(OR(Z2, Z3)).
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The Z-Affine CSP-Algorithm Zoo

There are more CSP-algorithms combining combinatorial approaches with solving

Z-linear systems:

Z-affine

k-consistency

BLP+AIP BAK

C(BA)

Open Problem

CLAP

cohomological
k-consistency

do not solve our
counterexamples

solve counterexample

do not solve an NPC
or-construction

® polynomial-time counterexample for cohomological k-consistency?



