Separability properties of monadically dependent graph classes

Édouard Bonnet Sam Braunfeld <u>Ioannis Eleftheriadis</u>^{*} Colin Genniet Nikolas Mählmann Michał Pilipczuk Wojciech Przybyszewski Szymon Toruńczyk

*University of Cambridge

FMT 2025, Les Houches May 2027, 2025

Ioannis	Eleft	heriadi	s (Cam)	1
---------	-------	---------	---------	---

Motivation

FO model checking over \mathcal{C} :

```
Given: A FO-sentence \phi and a graph G \in C.
Parameter: |\phi|.
Decide: G \models \phi.
```

Conjecture

A hereditary class admits FPT first-order model checking iff it is monadically dependent.

where: monadic dependence = does not transduce the class of all graphs

Ioannis	Eleftheriadis	(Cam)
---------	---------------	-------

Motivation

The conjecture has been confirmed for:

- $K_{t,t}$ -free classes (where mon. dependence = nowhere density, [GKS17])
- edge-stable classes (where mon. dependence = mon. stability, [DEM⁺24])
- ordered classes (where mon. dependence = bdd twin-width, [BGOdM⁺22])

The conjecture has been confirmed for:

- $K_{t,t}$ -free classes (where mon. dependence = nowhere density, [GKS17])
- edge-stable classes (where mon. dependence = mon. stability, $[DEM^+24]$)
- ordered classes (where mon. dependence = bdd twin-width, [BGOdM $^+22$])

Theorem (Dreier, Mählmann, Toruńczyk, 2024)

Model checking on hereditary independent classes is AW[*]-hard.

The conjecture has been confirmed for:

- $K_{t,t}$ -free classes (where mon. dependence = nowhere density, [GKS17])
- edge-stable classes (where mon. dependence = mon. stability, $[DEM^+24]$)
- ordered classes (where mon. dependence = bdd twin-width, [BGOdM⁺22])

Theorem (Dreier, Mählmann, Toruńczyk, 2024)

Model checking on hereditary independent classes is AW[*]-hard.

Numerous restricted cases of the tractability side of the conjecture are still open...

Ioannis	Elef	theriadi	is (Cam)
---------	------	----------	---------	---

The conjecture has been confirmed for:

- $K_{t,t}$ -free classes (where mon. dependence = nowhere density, [GKS17])
- edge-stable classes (where mon. dependence = mon. stability, $[DEM^+24]$)
- ordered classes (where mon. dependence = bdd twin-width, [BGOdM⁺22])

Theorem (Dreier, Mählmann, Toruńczyk, 2024)

Model checking on hereditary independent classes is AW[*]-hard.

Numerous restricted cases of the tractability side of the conjecture are still open...

...we have insufficient combinatorial understanding of monadic dependence.

Ioannis	Eleftheriadis	(Cam)
---------	---------------	-------

Characterisations of nowhere density

Originally defined in terms of the exclusion of shallow minors, nowhere dense classes have been shown to admit various equivalent characterisations:

- forbidden subgraphs
- quasi-bounded bounded treedepth covers
- Splitter game
- sparse neighbourhood covers
- neighbourhood complexity
- uniform quasi-wideness
- "local separability"

For every G and $\varepsilon > 0$ there exists $k := k(tw(G), \varepsilon)$ such that every connected component of G contains fewer than $\varepsilon \cdot |G|$ vertices after deleting at most k vertices.

For every G and $\varepsilon > 0$ there exists $k := k(tw(G), \varepsilon)$ such that every connected component of G contains fewer than $\varepsilon \cdot |G|$ vertices after deleting at most k vertices.

Theorem (Nesetril, Ossona de Mendez, 2016)

Let C be nowhere dense. Then for every $r \in \mathbb{N}$ and $\varepsilon > 0$ there exists $k := k(C, r, \varepsilon)$ such that for every $G \in C$ there is some $S \subseteq V(G)$ with $|S| \leq k$ satisfying:

$$rac{|\mathrm{Ball}^r_{G\setminus \mathcal{S}}(v)|}{|\mathcal{G}|} < arepsilon, \quad \textit{for all } v \in V(\mathcal{G})$$

Ioannis Eleftheriadis (Cam)
-------------------------	-----	---

For every G and $\varepsilon > 0$ there exists $k := k(tw(G), \varepsilon)$ such that every connected component of G contains fewer than $\varepsilon \cdot |G|$ vertices after deleting at most k vertices.

Theorem (Nesetril, Ossona de Mendez, 2016)

A class C is nowhere dense if and only if for every $r \in \mathbb{N}$ and $\varepsilon > 0$ there exists $k := k(C, r, \varepsilon)$ such that for every $G \in C$ and every $A \subseteq V(G)$ there is some $S \subseteq A$ with $|S| \leq k$ satisfying:

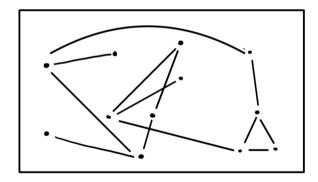
$$\frac{|\operatorname{Ball}^{r}_{\boldsymbol{G[A \setminus S]}}(v)|}{|A|} < \varepsilon, \quad \textit{for all } v \in V(G)$$

Ioannis	Eleftheriadis	(Cam)
---------	---------------	-------

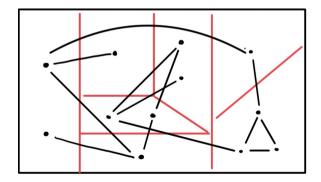
For every G and $\varepsilon > 0$ there exists $k := k(cw(G), \varepsilon)$ and a k-flip G' of G such that every connected component of G' contains fewer than $\varepsilon \cdot |G|$ vertices.

イロト イポト イヨト イヨト

For every G and $\varepsilon > 0$ there exists $k := k(cw(G), \varepsilon)$ and a *k*-flip G' of G such that every connected component of G' contains fewer than $\varepsilon \cdot |G|$ vertices.

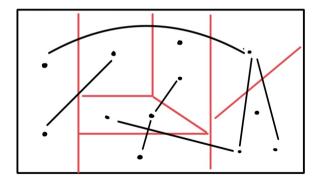


For every G and $\varepsilon > 0$ there exists $k := k(cw(G), \varepsilon)$ and a k-flip G' of G such that every connected component of G' contains fewer than $\varepsilon \cdot |G|$ vertices.



7/19

For every G and $\varepsilon > 0$ there exists $k := k(cw(G), \varepsilon)$ and a *k*-flip G' of G such that every connected component of G' contains fewer than $\varepsilon \cdot |G|$ vertices.



Theorem (BBEGMPPT, 2025)

A class C is monadically dependent if and only if for every $r \in \mathbb{N}$ and $\varepsilon > 0$ there exists $k := k(C, r, \varepsilon)$ such that for every $G \in C$ and every $A \subseteq V(G)$ there is some k-flip G' of G satisfying:

$$rac{|\mathrm{Ball}'_{G'[\mathcal{A}]}(v)|}{|\mathcal{A}|} < arepsilon, \quad \textit{for all } v \in V(G)$$

Ioannis E	leftheriad	is (Cam)
-----------	------------	----------

9/19

Theorem (BBEGMPPT, 2025)

A class C is monadically dependent if and only if for every $r \in \mathbb{N}$ and $\varepsilon > 0$ there exists $k := k(C, r, \varepsilon)$ such that for every $G \in C$ and every probability measure $\mu : \mathcal{P}(V(G)) \to [0, 1]$ there is some k-flip G' of G satisfying:

 $\mu(\operatorname{Ball}_{G'}^r(v)) < \varepsilon, \quad \text{for all } v \in V(G)$

Theorem (BBEGMPPT, 2025)

A class C is monadically dependent if and only if for every $r \in \mathbb{N}$ and $\varepsilon > 0$ there exists $k := k(C, r, \varepsilon)$ such that for every $G \in C$ and every probability measure $\mu : \mathcal{P}(V(G)) \to [0, 1]$ there is some k-flip G' of G satisfying:

 $\mu(\operatorname{Ball}_{G'}^r(v)) < \varepsilon, \quad \text{for all } v \in V(G)$

We call this property *flip-separability*.

10/19

Lemma

Flip-separability is closed under transductions.

		지 나는 지 않는 지 못 한 지 못 한	≡ જોવ(જ
Ioannis Eleftheriadis (Cam)	Separability properties	FMT 2025	11/19

Lemma

Flip-separability is closed under transductions.

Proof: For every transduction \mathcal{T} involving c colours and formulas of quantifier rank at most q, any two graphs G, H such that $H \in \mathcal{T}(G)$, and any k-flip G' of G there exists a $\Xi(k, c, q)$ -flip H' of H such that for all $u \in V(H)$:

 $\operatorname{Ball}_{H'}^r(u)\subseteq\operatorname{Ball}_{G'}^{2^q\cdot r}(u)$

11/19

Lemma

Flip-separability is closed under transductions.

Proof: For every transduction \mathcal{T} involving c colours and formulas of quantifier rank at most q, any two graphs G, H such that $H \in \mathcal{T}(G)$, and any k-flip G' of G there exists a $\Xi(k, c, q)$ -flip H' of H such that for all $u \in V(H)$:

$$\operatorname{Ball}_{H'}^r(u) \subseteq \operatorname{Ball}_{G'}^{2^q \cdot r}(u)$$

Lemma

The class of all graphs is not flip-separable.

Ioannis Eleftheriad	lis (Cam)
---------------------	-----------

Lemma

Flip-separability is closed under transductions.

Proof: For every transduction \mathcal{T} involving c colours and formulas of quantifier rank at most q, any two graphs G, H such that $H \in \mathcal{T}(G)$, and any k-flip G' of G there exists a $\Xi(k, c, q)$ -flip H' of H such that for all $u \in V(H)$:

$$\operatorname{Ball}_{H'}^r(u) \subseteq \operatorname{Ball}_{G'}^{2^q \cdot r}(u)$$

Lemma

The class of all graphs is not flip-separable.

Proof: Any flip-separable class has bounded VC-dimension.

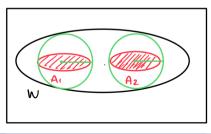
Ioannis Eleftheriadis (Cam)

Flip-breakability

Theorem (Dreier, Mählmann, Toruńczyk, 2024)

Every monadically dependent graph class C is flip-breakable, i.e. for every $r \in \mathbb{N}$ there exists t := t(C, r) and a function $M_r : \mathbb{N} \to \mathbb{N}$ such that for every graph $G \in C$, $m \in \mathbb{N}$, and set $W \subseteq V(G)$ of size at least $M_r(m)$, there are disjoint subsets $A_1 \subseteq W, A_2 \subseteq W$ each of size at least m and a t-definable flip H of G satisfying

 $\operatorname{Ball}_{H}^{r}(A_{1}) \cap \operatorname{Ball}_{H}^{r}(A_{2}) = \emptyset$



Ioannis Eleftheriadis (Cam)

Separability properties

12/19

Proof idea:

• Fix $r \in \mathbb{N}$ and $\varepsilon > 0$. Let $G \in C$ and $S \subseteq V(G)$ be of minimal size such that there is S-definable flip of G witnessing that all the r-balls are ε -small. We know that S = V(G) works;

Proof idea:

- Fix $r \in \mathbb{N}$ and $\varepsilon > 0$. Let $G \in C$ and $S \subseteq V(G)$ be of minimal size such that there is S-definable flip of G witnessing that all the r-balls are ε -small. We know that S = V(G) works;
- We want to argue that k := |S| is bounded by something depending only on r and ε ;

Proof idea:

- Fix $r \in \mathbb{N}$ and $\varepsilon > 0$. Let $G \in C$ and $S \subseteq V(G)$ be of minimal size such that there is S-definable flip of G witnessing that all the r-balls are ε -small. We know that S = V(G) works;
- We want to argue that k := |S| is bounded by something depending only on r and ε ;
- If k is big enough then we can apply breakability $p := \lceil \frac{1}{\varepsilon} \rceil$ many times on S to get sets A_1, \ldots, A_p pairwise far apart is some F-flip, where |F| is bounded;

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

Proof idea:

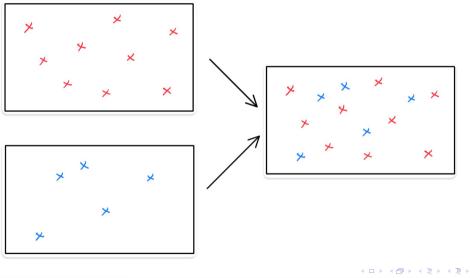
- Fix $r \in \mathbb{N}$ and $\varepsilon > 0$. Let $G \in C$ and $S \subseteq V(G)$ be of minimal size such that there is S-definable flip of G witnessing that all the r-balls are ε -small. We know that S = V(G) works;
- We want to argue that k := |S| is bounded by something depending only on r and ε ;
- If k is big enough then we can apply breakability $p := \lceil \frac{1}{\varepsilon} \rceil$ many times on S to get sets A_1, \ldots, A_p pairwise far apart is some F-flip, where |F| is bounded;
- In this F-flip, one of the A_i 's must have large measure

Proof idea:

- Fix $r \in \mathbb{N}$ and $\varepsilon > 0$. Let $G \in C$ and $S \subseteq V(G)$ be of minimal size such that there is S-definable flip of G witnessing that all the r-balls are ε -small. We know that S = V(G) works;
- We want to argue that k := |S| is bounded by something depending only on r and ε ;
- If k is big enough then we can apply breakability $p := \lceil \frac{1}{\varepsilon} \rceil$ many times on S to get sets A_1, \ldots, A_p pairwise far apart is some F-flip, where |F| is bounded;
- In this F-flip, one of the A_i 's must have large measure
- Ideally we would want to remove A_i from S, but we should also add F back to it...

We want to somehow combine the information coming from multiple flips.

Aggregation of deletions



Ioannis Eleftheriadis (Cam)

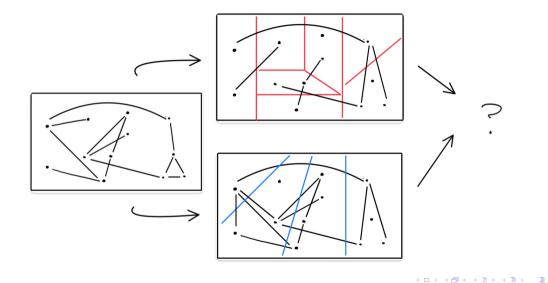
Separability properties

FMT 2025

14/19

3

Aggregation of flips..?



Partition metric

For any \mathcal{P} partition of V(G) we define

$$\operatorname{dist}_{\mathcal{P}}^{\mathcal{G}}(u,v) \coloneqq \max \{ \operatorname{dist}_{\mathcal{G}'}(u,v) \colon \mathcal{G}' \text{ is a } \mathcal{P}\text{-flip of } \mathcal{G} \},$$

or equivalently

Ioannis Eleftheriadis

$$\operatorname{Ball}_{\mathcal{P}}^{r}(u) := \bigcap_{G' \text{ is a } \mathcal{P}\text{-flip of } G} \operatorname{Ball}_{G'}^{r}(u)$$

s (Cam)	Separability properties	FMT 2025

イロト イポト イヨト イヨト

3

16/19

Partition metric

For any \mathcal{P} partition of V(G) we define

$$\operatorname{dist}_{\mathcal{P}}^{\mathcal{G}}(u,v) \coloneqq \max \{ \operatorname{dist}_{\mathcal{G}'}(u,v) \colon \mathcal{G}' \text{ is a } \mathcal{P}\text{-flip of } \mathcal{G} \},$$

or equivalently

$$\operatorname{Ball}_{\mathcal{P}}^{r}(u) := \bigcap_{G' \text{ is a } \mathcal{P} \text{-flip of } G} \operatorname{Ball}_{G'}^{r}(u)$$

E.g.: For $\mathcal{P} = \{V(G)\}$ this gives $\operatorname{dist}_{\mathcal{P}}^{G}(u, v) = \max(\operatorname{dist}_{G}(u, v), \operatorname{dist}_{\bar{G}}(u, v))$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ○ ○ ○

For any \mathcal{P} partition of V(G) we define

$$\operatorname{dist}_{\mathcal{P}}^{\mathcal{G}}(u,v) \coloneqq \max \{ \operatorname{dist}_{\mathcal{G}'}(u,v) \colon \mathcal{G}' \text{ is a } \mathcal{P}\text{-flip of } \mathcal{G} \},$$

or equivalently

$$\operatorname{Ball}_{\mathcal{P}}^{r}(u) := \bigcap_{G' \text{ is a } \mathcal{P} \text{-flip of } G} \operatorname{Ball}_{G'}^{r}(u)$$

E.g.: For $\mathcal{P} = \{V(G)\}$ this gives $\operatorname{dist}_{\mathcal{P}}^{G}(u, v) = \max(\operatorname{dist}_{G}(u, v), \operatorname{dist}_{\bar{G}}(u, v))$ Intuition: things are far apart in $\operatorname{dist}_{\mathcal{P}}$ iff this is witnessed by some \mathcal{P} -flip

- -

Sometimes we only care about distance, and sometimes we care about concrete structure.

		◆□▶ ◆圖▶ ◆恵▶ ◆恵≯	ヨー うくぐ
Ioannis Eleftheriadis (Cam)	Separability properties	FMT 2025	17 / 19

Sometimes we only care about distance, and sometimes we care about concrete structure.

It turns out that these perspectives are interchangeable:

Theorem

For every graph G of VC-dimension d and a partition \mathcal{P} of V(G), there is a set of vertices S of size $\mathcal{O}(d \cdot |\mathcal{P}|^{2d+2})$ and an S-definable flip G' of G such that for every $r \in \mathbb{N}$, $v \in V(G)$

 $\operatorname{Ball}_{G'}^r(v) \subseteq \operatorname{Ball}_{\mathcal{P}}^{30r}(v).$

Proof idea:

• Fix $r \in \mathbb{N}$ and $\varepsilon > 0$. Let $G \in \mathcal{C}$ and $S \subseteq V(G)$ be of minimal size such that all the *r*-balls are ε -small in the *S*-metric. We know that S = V(G) works;

프 에 에 프 어

Proof idea:

- Fix $r \in \mathbb{N}$ and $\varepsilon > 0$. Let $G \in \mathcal{C}$ and $S \subseteq V(G)$ be of minimal size such that all the *r*-balls are ε -small in the *S*-metric. We know that S = V(G) works;
- We want to argue that k := |S| is bounded by something depending only on r and ε ;

18/19

Proof idea:

- Fix $r \in \mathbb{N}$ and $\varepsilon > 0$. Let $G \in \mathcal{C}$ and $S \subseteq V(G)$ be of minimal size such that all the *r*-balls are ε -small in the *S*-metric. We know that S = V(G) works;
- We want to argue that k := |S| is bounded by something depending only on r and ε ;
- If k is big enough then we can use breakability on S in particular, we can apply breakability $p := \lceil \frac{1}{\varepsilon} \rceil$ many times to get sets A_1, \ldots, A_p pairwise far apart is some F-flip, where |F| is bounded;

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

Proof idea:

- Fix $r \in \mathbb{N}$ and $\varepsilon > 0$. Let $G \in \mathcal{C}$ and $S \subseteq V(G)$ be of minimal size such that all the *r*-balls are ε -small in the *S*-metric. We know that S = V(G) works;
- We want to argue that k := |S| is bounded by something depending only on r and ε ;
- If k is big enough then we can use breakability on S in particular, we can apply breakability $p := \lfloor \frac{1}{\varepsilon} \rfloor$ many times to get sets A_1, \ldots, A_p pairwise far apart is some F-flip, where |F| is bounded;
- In this F-flip, one of the A_i's must have large measure;

Proof idea:

- Fix $r \in \mathbb{N}$ and $\varepsilon > 0$. Let $G \in \mathcal{C}$ and $S \subseteq V(G)$ be of minimal size such that all the *r*-balls are ε -small in the *S*-metric. We know that S = V(G) works;
- We want to argue that k := |S| is bounded by something depending only on r and ε ;
- If k is big enough then we can use breakability on S in particular, we can apply breakability $p := \lfloor \frac{1}{\varepsilon} \rfloor$ many times to get sets A_1, \ldots, A_p pairwise far apart is some F-flip, where |F| is bounded;
- In this F-flip, one of the A_i 's must have large measure;

• Take $S' = (S \setminus A_i) \cup F$.

This does the trick, but it gets slightly technical...

Thank you!

		▲□▶ ▲圖▶ ▲圖▶ ▲圖▶	E nac
Ioannis Eleftheriadis (Cam)	Separability properties	FMT 2025	19/19

Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé, and Szymon Toruńczyk.

Twin-width IV: ordered graphs and matrices.

In *Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing*, pages 924–937, 2022.

Jan Dreier, Ioannis Eleftheriadis, Nikolas Mahlmann, Rose McCarty, Michal Pilipczuk, and Szymon Torunczyk.

First-Order Model Checking on Monadically Stable Graph Classes .

In 2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS), pages 21–30, Los Alamitos, CA, USA, October 2024. IEEE Computer Society.

・ロット 全部 マント・ロット

Jan Dreier, Nikolas Mählmann, and Szymon Toruńczyk.

Flip-breakability: A combinatorial dichotomy for monadically dependent graph classes.

In *Proceedings of the 56th Annual ACM Symposium on Theory of Computing*, STOC 2024, page 1550–1560, New York, NY, USA, 2024. Association for Computing Machinery.

📔 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz.

Deciding first-order properties of nowhere dense graphs.

J. ACM, 64(3):17:1–17:32, 2017.

19/19