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Motivation

FO model checking over C:

Given: A FO-sentence ϕ and a graph G ∈ C.
Parameter: |ϕ|.

Decide: G |= ϕ.

Conjecture
A hereditary class admits FPT first-order model checking iff it is monadically dependent.

where: monadic dependence = does not transduce the class of all graphs
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Motivation

The conjecture has been confirmed for:

Kt,t-free classes (where mon. dependence = nowhere density, [GKS17])

edge-stable classes (where mon. dependence = mon. stability, [DEM+24])

ordered classes (where mon. dependence = bdd twin-width, [BGOdM+22])

Theorem (Dreier, Mählmann, Toruńczyk, 2024)
Model checking on hereditary independent classes is AW[∗]-hard.

Numerous restricted cases of the tractability side of the conjecture are still open...

...we have insufficient combinatorial understanding of monadic dependence.
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Characterisations of nowhere density

Originally defined in terms of the exclusion of shallow minors, nowhere dense classes have been
shown to admit various equivalent characterisations:

forbidden subgraphs

quasi-bounded bounded treedepth covers

Splitter game

sparse neighbourhood covers

neighbourhood complexity

uniform quasi-wideness

“local separability”

. . .
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Separability in sparse classes

Lemma
For every G and ε > 0 there exists k := k(tw(G ), ε) such that every connected component of
G contains fewer than ε · |G | vertices after deleting at most k vertices.

Theorem (Nesetril, Ossona de Mendez, 2016)
Let C be nowhere dense. Then for every r ∈ N and ε > 0 there exists k := k(C, r , ε) such that
for every G ∈ C there is some S ⊆ V (G ) with |S | ≤ k satisfying:

|BallrG\S(v)|
|G |

< ε, for all v ∈ V (G )
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G contains fewer than ε · |G | vertices after deleting at most k vertices.
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A class C is nowhere dense if and only if for every r ∈ N and ε > 0 there exists k := k(C, r , ε)
such that for every G ∈ C and every A ⊆ V (G ) there is some S ⊆ A with |S | ≤ k satisfying:

|BallrG [A\S](v)|
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Separability in dense classes

Lemma
For every G and ε > 0 there exists k := k(cw(G ), ε) and a k-flip G ′ of G such that every
connected component of G ′ contains fewer than ε · |G | vertices.
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Separability in dense classes

Theorem (BBEGMPPT, 2025)
A class C is monadically dependent if and only if for every r ∈ N and ε > 0 there exists
k := k(C, r , ε) such that for every G ∈ C and every A ⊆ V (G ) there is some k-flip G ′ of G
satisfying:

|BallrG ′[A](v)|
|A|

< ε, for all v ∈ V (G )
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Separability in dense classes

Theorem (BBEGMPPT, 2025)
A class C is monadically dependent if and only if for every r ∈ N and ε > 0 there exists
k := k(C, r , ε) such that for every G ∈ C and every probability measure µ : P(V (G )) → [0, 1]
there is some k-flip G ′ of G satisfying:

µ(BallrG ′(v)) < ε, for all v ∈ V (G )

We call this property flip-separability.
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Flip-separability =⇒ monadic dependence

Lemma
Flip-separability is closed under transductions.

Proof: For every transduction T involving c colours and formulas of quantifier rank at most q,
any two graphs G ,H such that H ∈ T (G ), and any k-flip G ′ of G there exists a Ξ(k , c , q)-flip
H ′ of H such that for all u ∈ V (H):

BallrH′(u) ⊆ Ball2
q ·r

G ′ (u)

Lemma
The class of all graphs is not flip-separable.

Proof: Any flip-separable class has bounded VC-dimension.
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Flip-breakability

Theorem (Dreier, Mählmann, Toruńczyk, 2024)

Every monadically dependent graph class C is flip-breakable, i.e.
for every r ∈ N there exists t := t(C, r) and a function Mr : N → N such that for every graph
G ∈ C, m ∈ N, and set W ⊆ V (G ) of size at least Mr (m), there are disjoint subsets
A1 ⊆ W ,A2 ⊆ W each of size at least m and a t-definable flip H of G satisfying

BallrH(A1) ∩ BallrH(A2) = ∅
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Monadic dependence =⇒ flip-separability

Proof idea:

Fix r ∈ N and ε > 0. Let G ∈ C and S ⊆ V (G ) be of minimal size such that there is
S-definable flip of G witnessing that all the r -balls are ε-small. We know that S = V (G )
works;

We want to argue that k := |S | is bounded by something depending only on r and ε;

If k is big enough then we can apply breakability p := ⌈1
ε⌉ many times on S to get sets

A1, . . . ,Ap pairwise far apart is some F -flip, where |F | is bounded;

In this F -flip, one of the Ai ’s must have large measure

Ideally we would want to remove Ai from S , but we should also add F back to it...

We want to somehow combine the information coming from multiple flips.
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Aggregation of deletions
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Aggregation of flips..?
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Partition metric

For any P partition of V (G ) we define

distGP(u, v) := max { distG ′(u, v) : G ′ is a P-flip of G},

or equivalently
BallrP(u) :=

⋂
G ′ is a P-flip of G

BallrG ′(u)

E.g.: For P = {V (G )} this gives distGP(u, v) = max(distG (u, v), distḠ (u, v))

Intuition: things are far apart in distP iff this is witnessed by some P-flip
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Metric conversion

Sometimes we only care about distance, and sometimes we care about concrete structure.

It turns out that these perspectives are interchangeable:

Theorem
For every graph G of VC-dimension d and a partition P of V (G ), there is a set of vertices S of
size O(d · |P|2d+2) and an S-definable flip G ′ of G such that for every r ∈ N, v ∈ V (G )

BallrG ′(v) ⊆ Ball30r
P (v).
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Monadic dependence =⇒ flip-separability

Proof idea:

Fix r ∈ N and ε > 0. Let G ∈ C and S ⊆ V (G ) be of minimal size such that all the
r -balls are ε-small in the S-metric. We know that S = V (G ) works;

We want to argue that k := |S | is bounded by something depending only on r and ε;

If k is big enough then we can use breakability on S - in particular, we can apply
breakability p := ⌈1

ε⌉ many times to get sets A1, . . . ,Ap pairwise far apart is some F -flip,
where |F | is bounded;

In this F -flip, one of the Ai ’s must have large measure;

Take S ′ = (S \ Ai ) ∪ F .

This does the trick, but it gets slightly technical...
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Thank you!
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