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For FO-interpretations Y%  FO-definable is effectively
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FO-definable
For MSO-transductions The inverse image of
= MSO-interpretations U X k MSO-definable is effectively
of dimension 1 FO-definable

The inverse image of

For MSO-set-interpretations ~ (2)*  FO-definable is effectively
MSO-definable

Theorem [Bojanczyk, Kiefer, Lhote19]:

For MSO-interpretations The inverse image of

of dimension k U*  MSO-definable is effectively
from strings to strings MSO-definable

Theorem:

The inverse image of
MSO-definable is effectively
MSO-definable

For MSO-set-interpretations (2U )k
from strings to strings



String-to-string MSO-set-interpretation

Input and output signature: linear order symbol + unary predicates (letters)

A string-to-string MSO-set-interpretation consists of a tuple
of MSO-formulas over the input signature:

domain formula ‘\ v set-variables
order formula /\ 5(X) (or tuples of set-variables
of fixed dimension)
letter formulas /\Q(Xa Y)
o (X

(one for each letter)

Given an input string, it defines the output string consisting of:

- positions are subsets of the input that satisfy the domain formula

- the order is interpreted using the order formula (it is required to
produce a total order!)

- the unary predicates (letters) are interpreted using the letter formulas.
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order = lexicographic

letter = the input letter at the
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String-to-string abeac
MSO-set-interpretation

Example:
domain = non-empty sets

order = lexicographic

letter = the input letter at the
maximal position in the set

f > — >
20 21 2n—1
apay ...An—1 2 Qg A7 ...0,_ 1
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Polyregular functions

Polyregular functions correspond to the special case
where tuples of first-order variables are used instead
of tuples of sets (still MSO formulas) = MSO-
interpretation of dimension k.

Example:

domain = pairs of positions (x,y) with x<=y
order = lexicographic over (-x,y)

letter = the letter at y

f: > — >

apdi ...QAp—1 — (an_l)(an_ga,n_l) e (CL() e an_l)

abcbc ad
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Main result

Theorem: For a string-to-string map, the following items

are effectively equivalent: .

- being definable by an MSO-set-interpretation,

- being definable by an Ariadne-transducer,

- being definable by an Ariadne-transducer with regular
lookaround of the configuration,

- being definable by a push-only string-to-tree Ariadne-
transducer followed by a yield.

Furthermore, the inverse image of a regular string

language under such a map is effectively regular.

Joséphine C.




A configuration of an Ariadne-transducer is a walk on the
input word, decorated with states (from a finite set), that can
visit at most k times each position of the input string:

a b
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o o
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A transition is decided based on the full content of the configuration at
the head position (input letter + states), and can possibly either

- [push] extend the walk of one step (left or right), or

- [pop] rewind the walk of one step,

and at the same time it

- [updates] the head state, and

- [outputs] possibly produces a symbol from the output alphabet.
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String-to-string Ariadne-transducer

A configuration of an Ariadne-transducer is a walk on the
input word, decorated with states (from a finite set), that can
visit at most k times each position of the input string:

a b
o

C a a
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o
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A transition is decided based on the full content of the configuration at
the head position (input letter + states), and can possibly either

- [push] extend the walk of one step (left or right), or

- [pop] rewind the walk of one step,

and at the same time it

- [updates] the head state, and

- [outputs] possibly produces a symbol from the output alphabet.

Also: A total order on the states guarantees that it does not loop:
- transitions are required that states increase a each update.
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abcbcaa

PO OTOTRLLOCTONTRRONTOLPOTELOD DD
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Example (polyregular)

abcbcaa

api ...AQap—1 +— (an_l)(an_gan_l) e (CL() . an_l)

Remark: for polyregular functions,
each walk need only use a bounded

number of changes of direction.
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From Ariadne-transducers to MSO

(Easy direction) 1, ®

A configuration is a stack of pairs (called global stack): \ 2,®

(position, state) 2 ¢
5 @
O O O ® || ® 2,
o | ° ° 50
1 2 3 4 565 )\6) 7 8 9 4, ®
5, ®
< The local stack is its restriction” 1776, o)
to the head position. 7,
6, ®
5,
Remark: Global stacks ordered by prefix produce a forest . 6,0

of linear height and bounded rank.
Remark: Configurations can be represented by tuples of sets (=colorings).
Not obvious: The set of reachable configurations is MSO-definable.

Corollary: The output is MSO-set-interpretable in the input. Hence:
Functions computed by Ariadne-transducers are MSO-set-interpretations.



Lambda transducers
Consider an input alphabet ¥, and an output alphabet I'.

A lambda-transducer from X* to I'™, consists of

- a simple type 7 built from the base type o (using —)
- asimply typed lambda-term | : 7,

- asimply typed lambda-term F: t — o,

- asimply typed lambda-term Ta:t — 1, foralla € 2.
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Lambda transducers

Consider an input alphabet ¥, and an output alphabet I'.

A lambda-transducer from X* to I'™, consists of
e type 7 built from the base type o (using —)

Given a word u = ajaz...an € 27, the lambda-term

a simp
a simp
a simp
a simp

y typed
y typed
y typed

ambda-term | : 7, Using € : 0 and
ambda-termF:t — o, b:o0— o, foralbel.
ambda-term Ta: 7 — 1, for all a € 2.

' IS the reverse
(Tat; Ta2 ;...; Tan; F) I : 0 composition

Can be totally beta-reduced (in finitely many steps) into a term
which has the form (is equivalent to):

(b1,b2,,bm)8

The image of u by the lambda-transducer is b1ba...bm-1bm.
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Example:
- T:=0

| ;=€

F = AX. X
Ta:=a;a
To:=b:Db

Example:

T =0—050

| ;= AX. X
F:=A\.feg
Ta::}\f.a;f
Tp:=ANf.b ; f

Lambda transducers

(Ta1;Ta2 e ;Tan;F)I
=g (@1;a1;@2;a@2;...;a@n;an) €

Copies the input, while
doubling each letter.

Mirrors the input

Lemma: Ariadne-transducers can be effectively transformed
iInto equivalent lambda-transducers.

The parameter k corresponds to the order of .
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Inverse images of regular sets

Lemma: The inverse image of a regular language by a lambda-
transducers is regular.

Proof: Consider a DFA for a language L, of states Q, and
interpret

- the type o as the state Q

- T — 7 as the maps from the interpretation of t to the

interpretations of v’

- ¢ as the initial state (in 0)
- each letter a as its action on Q.

Then the interpretation of the lambda-transducer is a DFA
recognising the inverse image of L by the lambda transducer.

Corollary: MSO-set-interpretations preserve regular language
of strings by inverse image.
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Conclusion

Conjecture: Reverse

Finite state transducers holds unqler an
exponential growth

’ \ assumption.

Interpretations Simply typed
Finite model theory lambda-calculus

These correspondances form an active topic of
research that tie together two sides of logic:
model theory and proof theory!



