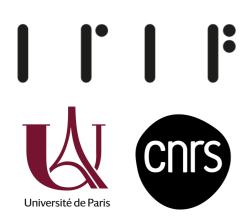
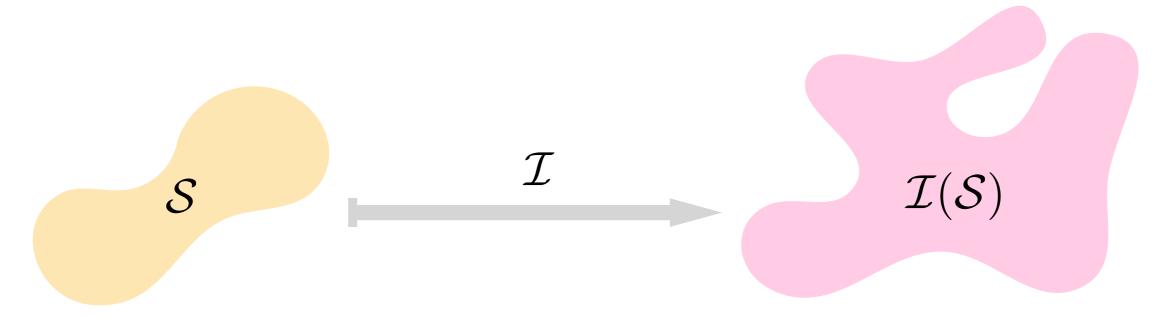
Thomas Colcombet, 30 May 2025, Finite Model Theory, Les Houches

joint work with Nathan Lhote, Lê Thành Dũng (Tito) Nguyễn and Pierre Ohlmann.



FO-interpretation of dimension k

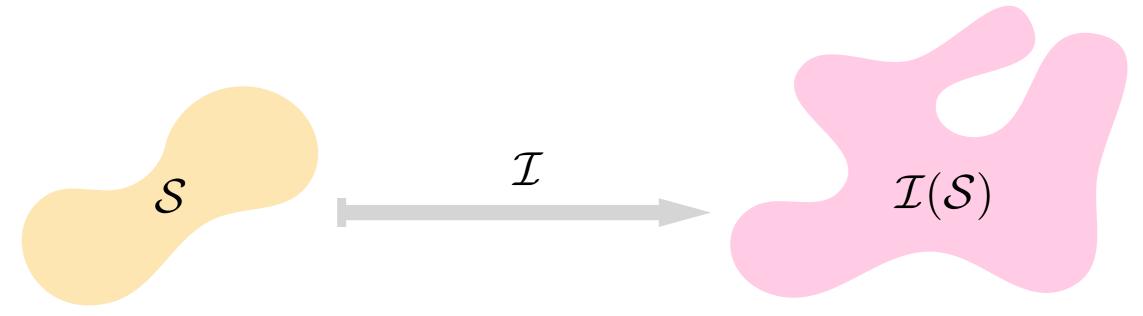


Input structure of universe U.

Output structure Elements are k-tuples of element of S. Relations defined in S by FO-formulas.

Eg. Path \mapsto grids.

FO-interpretation of dimension k



Input structure of universe U.

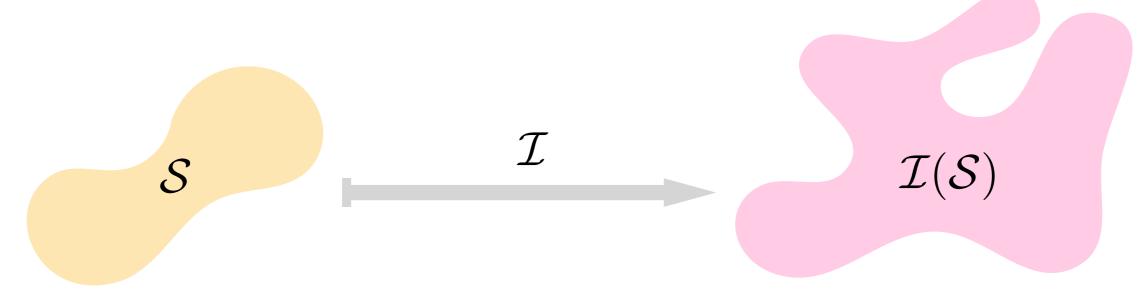
Output structure Elements are k-tuples of element of S. Relations defined in S by FO-formulas.

Eg. Path \mapsto grids.

Key fact: For all FO-sentences Φ , there exists effectively an FO-sentence $\Phi^{\mathcal{I}}$, such that $\mathcal{S}\models\Phi^{\mathcal{I}}$ iff $\mathcal{I}(\mathcal{S})\models\Phi$ for all structures \mathcal{S} .

(parameterless) MSO-transductions

= MSO-interpretation 1-dimensional with k-copying



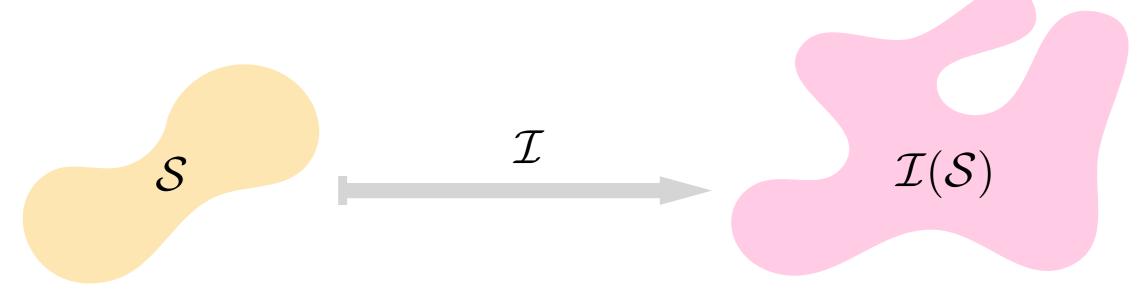
Input structure of universe U.

Output structure Universe MSO-definable in $U \times [k]$. Relations defined in S by MSO-formulas.

Eg. trees → bounded clique-width.

(parameterless) MSO-transductions

= MSO-interpretation 1-dimensional with k-copying



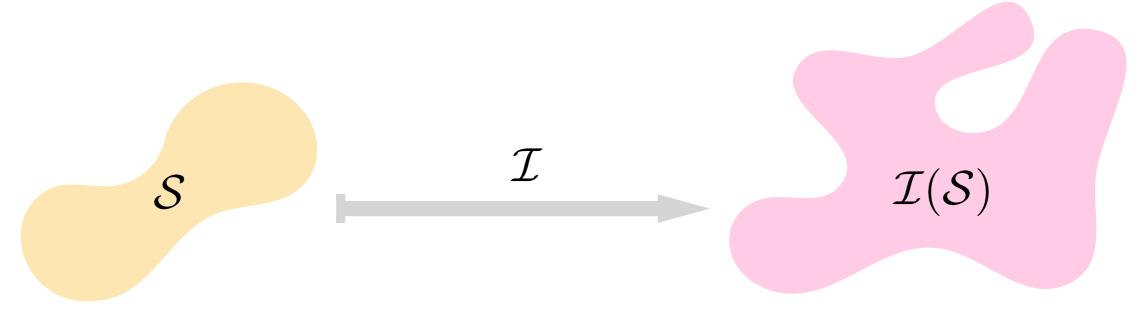
Input structure of universe U.

Output structure Universe MSO-definable in $U \times [k]$. Relations defined in S by MSO-formulas.

Eg. trees → bounded clique-width.

Key fact: For all MSO-sentences Φ , there exists effectively an MSO-sentence $\Phi^{\mathcal{I}}$, such that $\mathcal{S}\models\Phi^{\mathcal{I}}$ iff $\mathcal{I}(\mathcal{S})\models\Phi$ for all structures \mathcal{S} .

MSO-set-interpretations

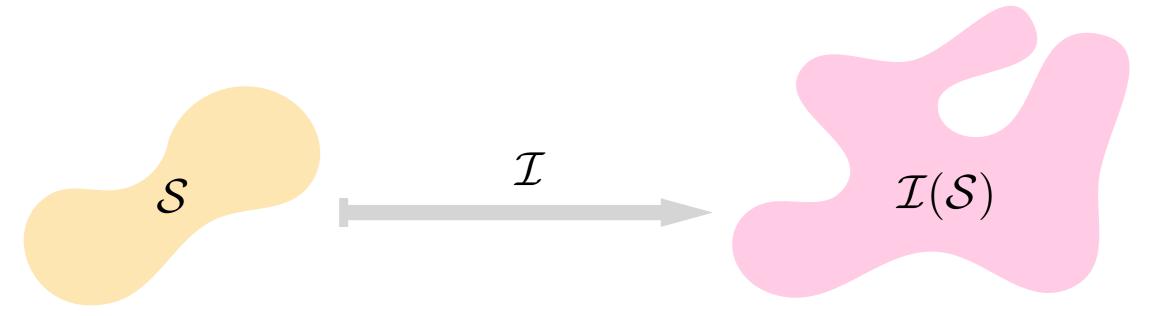


Input structure of universe U.

Output structure Universe MSO-definable in 2^{U} . Relations defined in S by MSO-formulas.

Eg. $(\omega,<) \mapsto$ automatic structure.

MSO-set-interpretations



Input structure of universe U.

Output structure Universe MSO-definable in 2^{U} . Relations defined in S by MSO-formulas.

Eg. $(\omega,<) \mapsto$ automatic structure.

Key fact: For all FO-sentences Φ , there exists effectively an MSO-sentence $\Phi^{\mathcal{I}}$, such that $\mathcal{S}\models\Phi^{\mathcal{I}}$ iff $\mathcal{I}(\mathcal{S})\models\Phi$ for all structures \mathcal{S} .

For FO-interpretations of dimension k	\mathcal{U}^k	The inverse image of FO-definable is effectively FO-definable
For MSO-transductions = MSO-interpretations of dimension 1	$\mathcal{U} \times k$	The inverse image of MSO-definable is effectively FO-definable
For MSO-set-interpretations	$(2^{\mathcal{U}})^k$	The inverse image of FO-definable is effectively MSO-definable

For FO-interpretations of dimension k	\mathcal{U}^k	The inverse image of FO-definable is effectively FO-definable
For MSO-transductions = MSO-interpretations of dimension 1	$\mathcal{U} \times k$	The inverse image of MSO-definable is effectively FO-definable
For MSO-set-interpretations	$(2^{\mathcal{U}})^k$	The inverse image of FO-definable is effectively MSO-definable

Theorem [Bojańczyk, Kiefer, Lhote19]:

For MSO-interpretations of dimension k from strings to strings

 \mathcal{U}^k

The inverse image of MSO-definable is effectively MSO-definable

Finite linear orders + unary predicates

For FO-interpretations of dimension k	\mathcal{U}^k	The inverse image of FO-definable is effectively FO-definable
For MSO-transductions = MSO-interpretations of dimension 1	$\mathcal{U} \times k$	The inverse image of MSO-definable is effectively FO-definable
For MSO-set-interpretations	$(2^{\mathcal{U}})^k$	The inverse image of FO-definable is effectively MSO-definable
Theorem [Bojańczyk, Kiefer, I	Lhote19]:	
For MSO-interpretations of dimension k from strings to strings	\mathcal{U}^k	The inverse image of MSO-definable is effectively MSO-definable
Theorem:		The inverse image of

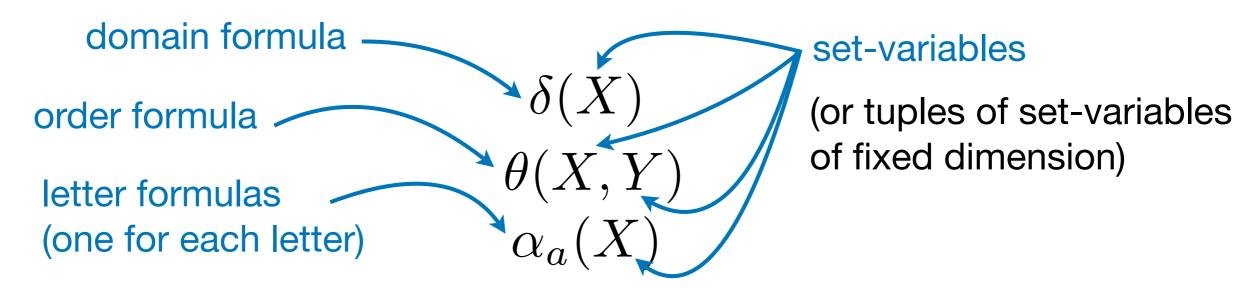
For MSO-set-interpretations from strings to strings

 $(2^{\mathcal{U}})^k$

MSO-definable is effectively MSO-definable

Input and output signature: linear order symbol + unary predicates (letters)

A string-to-string MSO-set-interpretation consists of a tuple of MSO-formulas over the input signature:



Given an input string, it defines the output string consisting of:

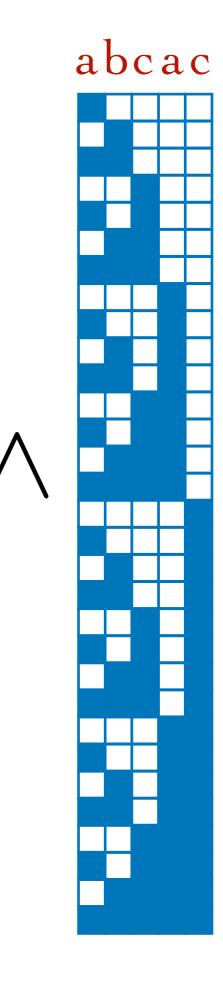
- positions are subsets of the input that satisfy the domain formula
- the order is interpreted using the order formula (it is required to produce a total order!)
- the unary predicates (letters) are interpreted using the letter formulas.

Example:

domain = non-empty sets

order = lexicographic

letter = the input letter at the maximal position in the set

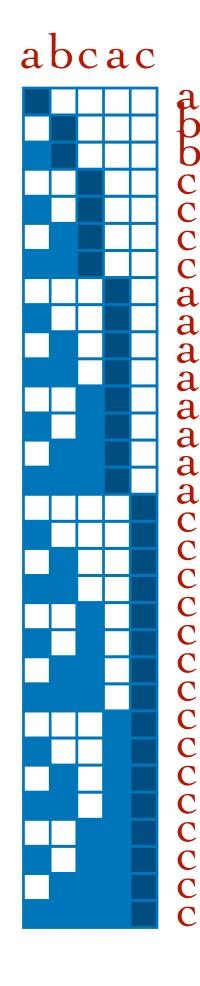


Example:

domain = non-empty sets

order = lexicographic

letter = the input letter at the maximal position in the set



Example:

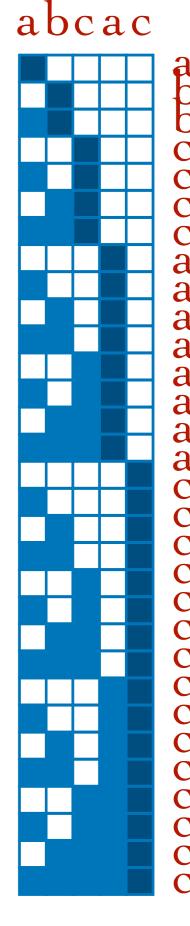
domain = non-empty sets

order = lexicographic

letter = the input letter at the maximal position in the set

$$f: \quad \Sigma^* \quad \to \quad \Sigma^*$$

$$a_0 a_1 \dots a_{n-1} \mapsto a_0^{2^0} a_1^{2^1} \dots a_{n-1}^{2^{n-1}}$$



Polyregular functions correspond to the special case where tuples of first-order variables are used instead of tuples of sets (still MSO formulas) = MSO-interpretation of dimension k.

Polyregular functions correspond to the special case where tuples of first-order variables are used instead of tuples of sets (still MSO formulas) = MSO-interpretation of dimension k.

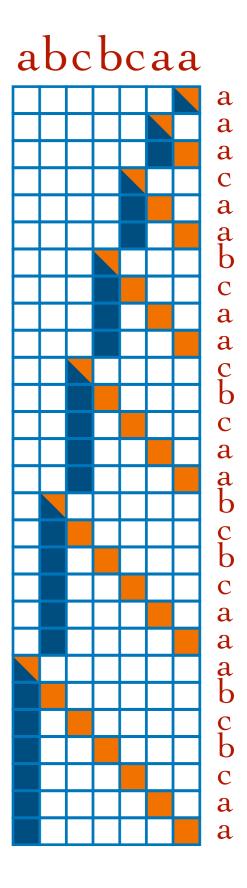
Example:

```
domain = pairs of positions (x,y) with x<=y
order = lexicographic over (-x,y)
letter = the letter at y</pre>
```

Polyregular functions correspond to the special case where tuples of first-order variables are used instead of tuples of sets (still MSO formulas) = MSO-interpretation of dimension k.

Example:

```
domain = pairs of positions (x,y) with x<=y
order = lexicographic over (-x,y)
letter = the letter at y</pre>
```



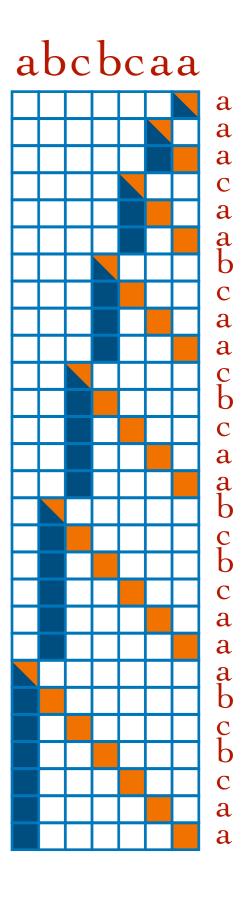
Polyregular functions correspond to the special case where tuples of first-order variables are used instead of tuples of sets (still MSO formulas) = MSO-interpretation of dimension k.

Example:

domain = pairs of positions (x,y) with x<=y
order = lexicographic over (-x,y)
letter = the letter at y</pre>

$$f: \Sigma^* \to \Sigma^*$$

 $a_0 a_1 \dots a_{n-1} \mapsto (a_{n-1})(a_{n-2} a_{n-1}) \dots (a_0 \dots a_{n-1})$



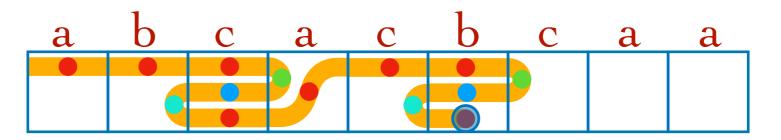
Main result

Theorem: For a string-to-string map, the following items are effectively equivalent:

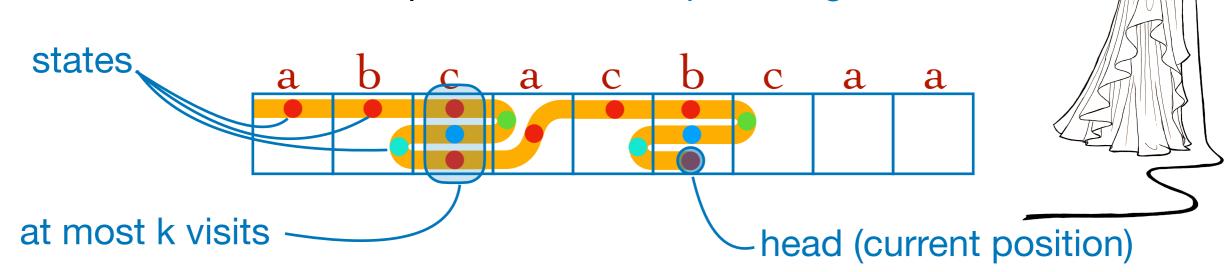
- being definable by an MSO-set-interpretation,
- being definable by an Ariadne-transducer,
- being definable by an Ariadne-transducer with regular lookaround of the configuration,
- being definable by a push-only string-to-tree Ariadnetransducer followed by a yield.

Furthermore, the inverse image of a regular string language under such a map is effectively regular.

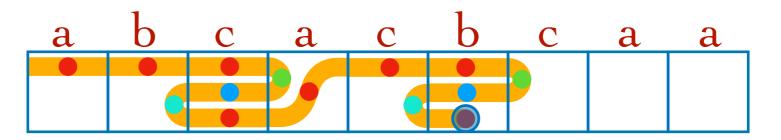
A configuration of an Ariadne-transducer is a walk on the input word, decorated with states (from a finite set), that can visit at most k times each position of the input string:



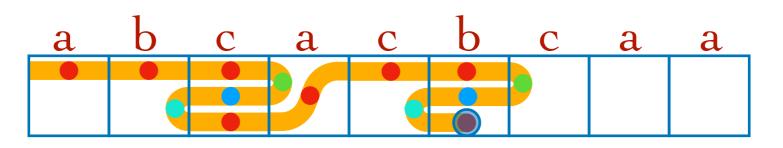
A configuration of an Ariadne-transducer is a walk on the input word, decorated with states (from a finite set), that can visit at most k times each position of the input string:



A configuration of an Ariadne-transducer is a walk on the input word, decorated with states (from a finite set), that can visit at most k times each position of the input string:



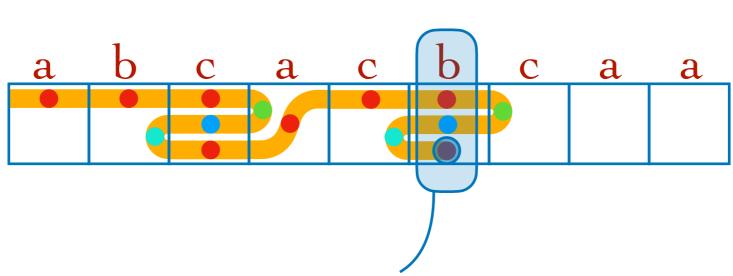
A configuration of an Ariadne-transducer is a walk on the input word, decorated with states (from a finite set), that can visit at most k times each position of the input string:



A transition is decided based on the full content of the configuration at the head position (input letter + states), and can possibly either

- [push] extend the walk of one step (left or right), or
- [pop] rewind the walk of one step, and at the same time it
- [updates] the head state, and
- [outputs] possibly produces a symbol from the output alphabet.

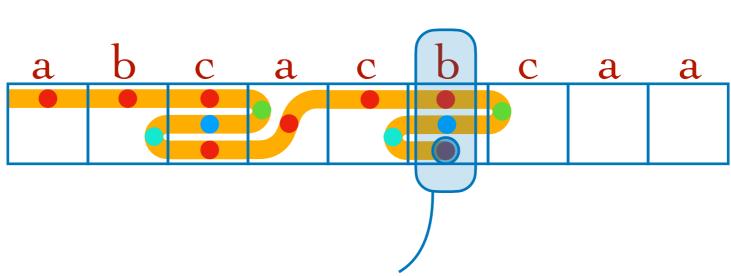
A configuration of an Ariadne-transducer is a walk on the input word, decorated with states (from a finite set), that can visit at most k times each position of the input string:



A transition is decided based on the full content of the configuration at the head position (input letter + states), and can possibly either

- [push] extend the walk of one step (left or right), or
- [pop] rewind the walk of one step, and at the same time it
- [updates] the head state, and
- [outputs] possibly produces a symbol from the output alphabet.

A configuration of an Ariadne-transducer is a walk on the input word, decorated with states (from a finite set), that can visit at most k times each position of the input string:



A transition is decided based on the full content of the configuration at the head position (input letter + states), and can possibly either

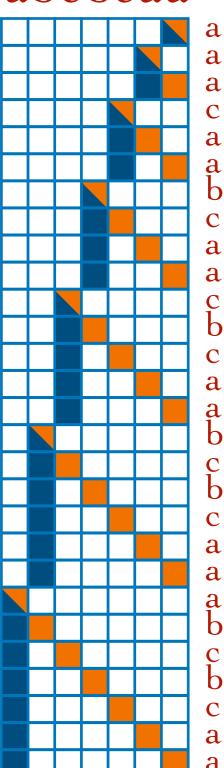
- [push] extend the walk of one step (left or right), or
- [pop] rewind the walk of one step, and at the same time it
- [updates] the head state, and
- [outputs] possibly produces a symbol from the output alphabet.

Also: A total order on the states guarantees that it does not loop:

- transitions are required that states increase a each update.

Example (polyregular)

abcbcaa

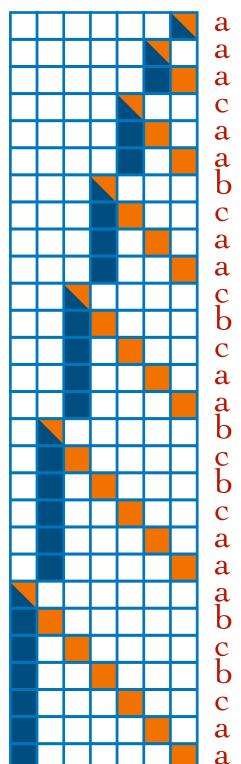


$$f: \Sigma^* \to \Sigma^*$$

 $a_0 a_1 \dots a_{n-1} \mapsto (a_{n-1})(a_{n-2} a_{n-1}) \dots (a_0 \dots a_{n-1})$

Example (polyregular)

abcbcaa

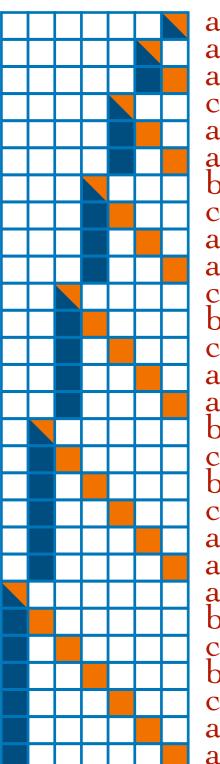


 $f: \Sigma^* \to \Sigma^*$ $a_0 a_1 \dots a_{n-1} \mapsto (a_{n-1})(a_{n-2} a_{n-1}) \dots (a_0 \dots a_{n-1})$

abcbcaa a a a C a a a a C

Example (polyregular)

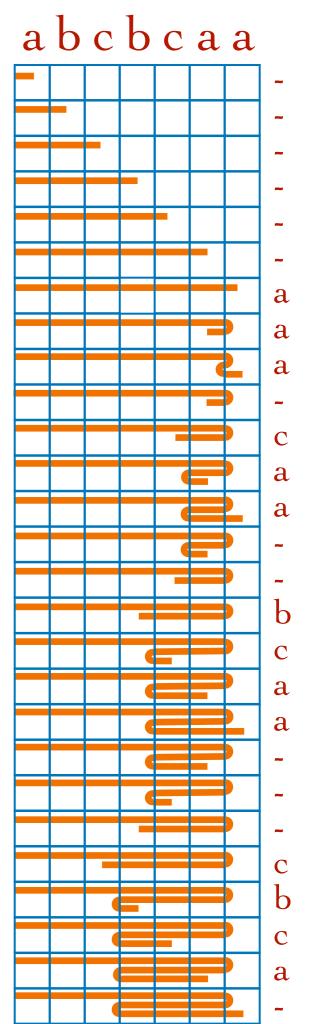
abcbcaa



$$f: \Sigma^* \to \Sigma^*$$

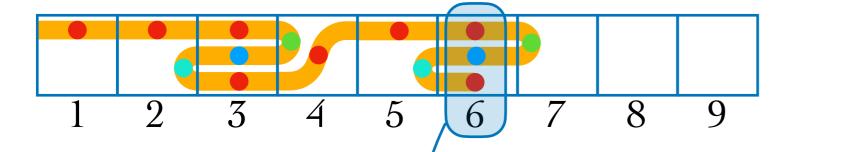
 $a_0 a_1 \dots a_{n-1} \mapsto (a_{n-1})(a_{n-2} a_{n-1}) \dots (a_0 \dots a_{n-1})$

Remark: for polyregular functions, each walk need only use a bounded number of changes of direction.



(Easy direction)

A configuration is a stack of pairs (called global stack): (position, state)



The local stack is its restriction to the head position.

2, •

3, •

4, •

3 •

2,

3, •

5, •

6,

7, •

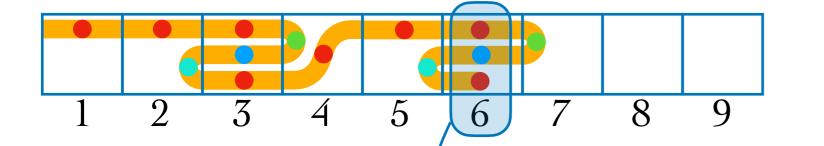
6,

5,

6,

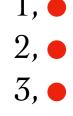
(Easy direction)

A configuration is a stack of pairs (called global stack): (position, state)

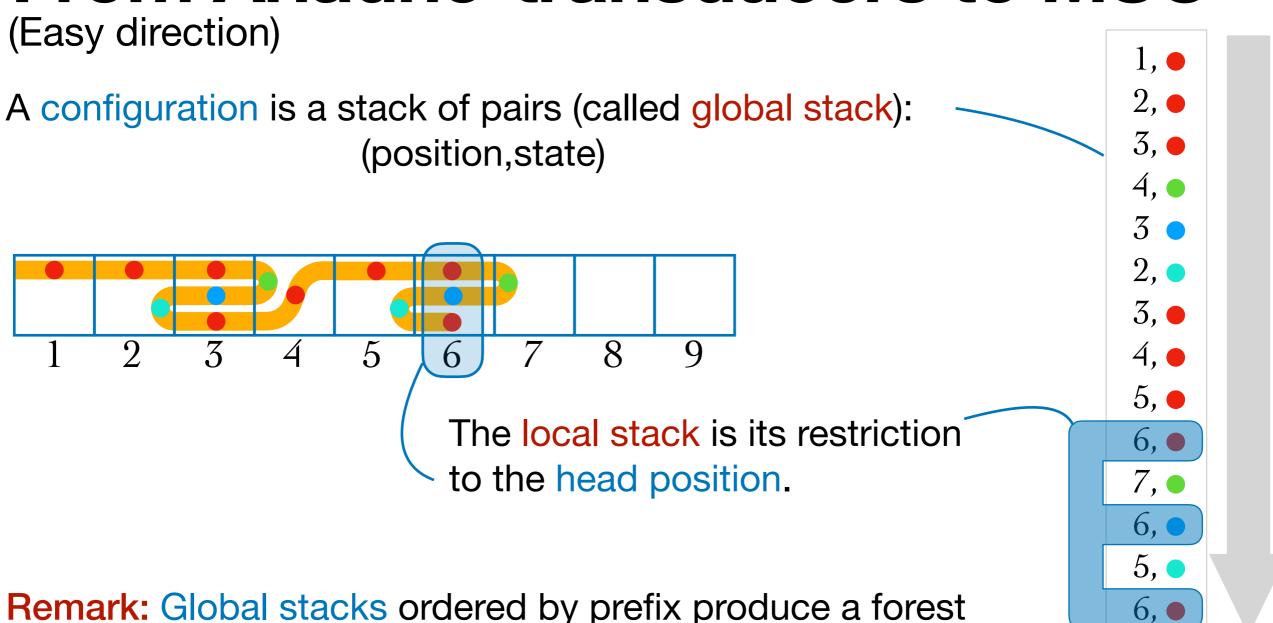


The local stack is its restriction to the head position.

Remark: Global stacks ordered by prefix produce a forest of linear height and bounded rank.

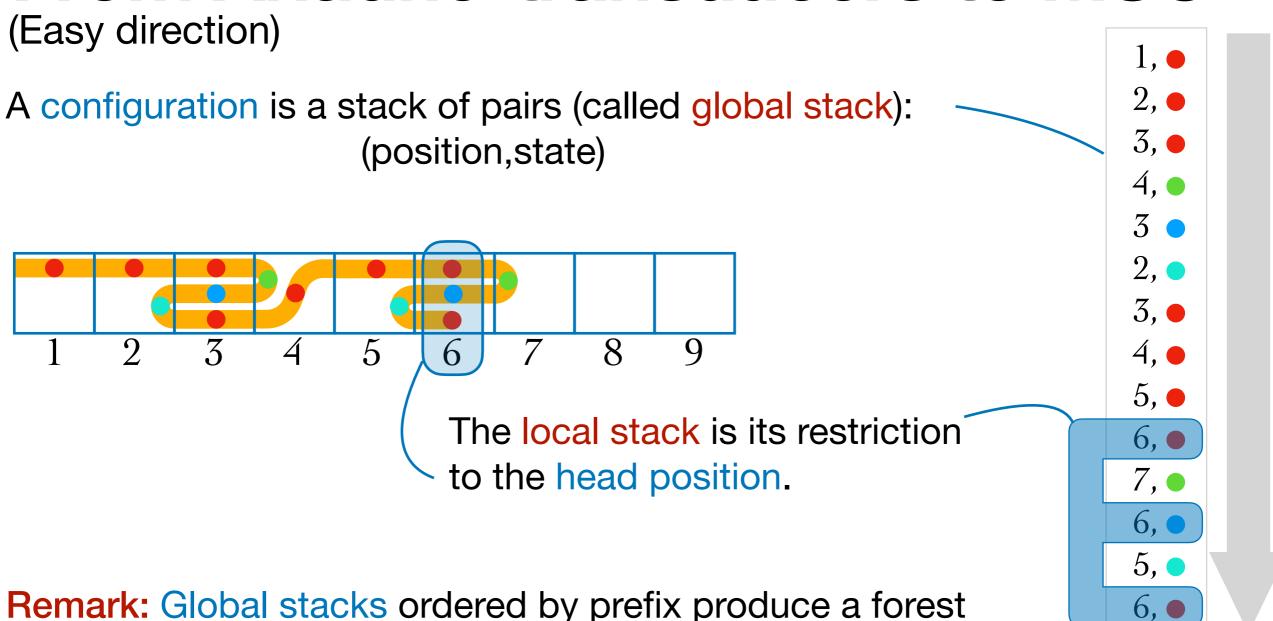


5, •



Remark: Global stacks ordered by prefix produce a forest of linear height and bounded rank.

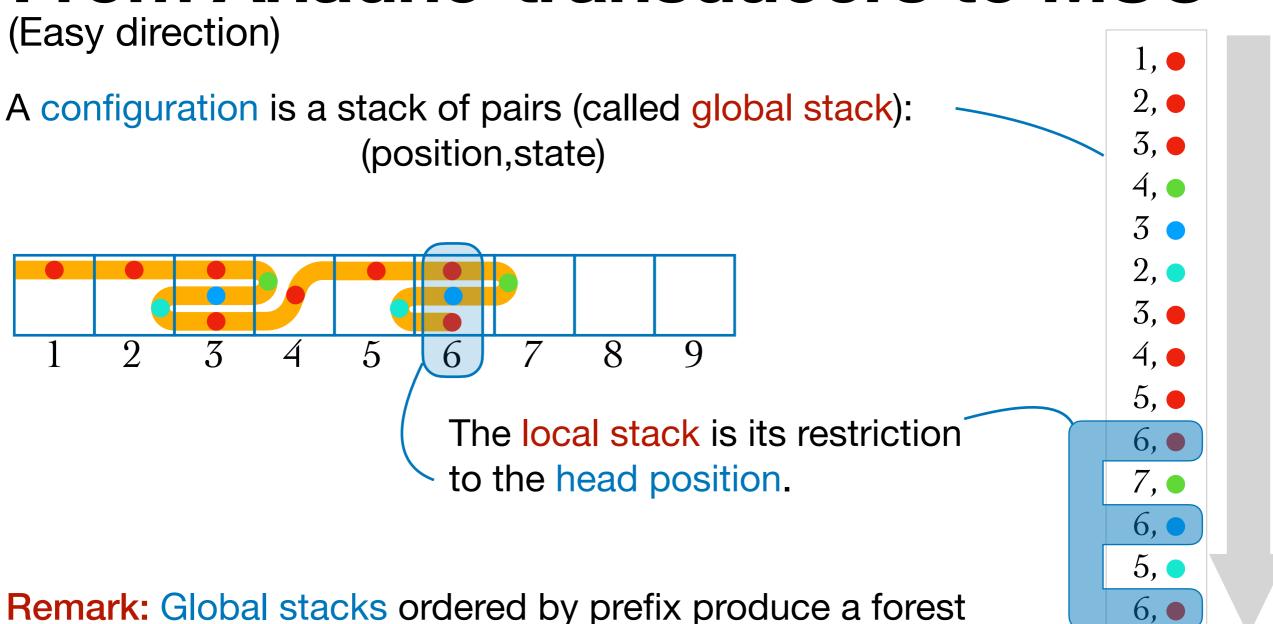
Remark: Configurations can be represented by tuples of sets (=colorings).



Remark: Global stacks ordered by prefix produce a forest of linear height and bounded rank.

Remark: Configurations can be represented by tuples of sets (=colorings).

Not obvious: The set of reachable configurations is MSO-definable.



Remark: Global stacks ordered by prefix produce a forest of linear height and bounded rank.

Remark: Configurations can be represented by tuples of sets (=colorings).

Not obvious: The set of reachable configurations is MSO-definable.

Corollary: The output is MSO-set-interpretable in the input. Hence: Functions computed by Ariadne-transducers are MSO-set-interpretations.

Lambda transducers

Consider an input alphabet Σ , and an output alphabet Γ .

A lambda-transducer from Σ^* to Γ^* , consists of

- a simple type τ built from the base type o (using \rightarrow)
- a simply typed lambda-term I: τ,
- a simply typed lambda-term $F : \tau \longrightarrow 0$,
- a simply typed lambda-term $T_a : \tau \longrightarrow \tau$, for all $a \in \Sigma$.

Lambda transducers

Consider an input alphabet Σ , and an output alphabet Γ .

A lambda-transducer from Σ^* to Γ^* , consists of

- a simple type τ built from the base type o (using \rightarrow)
- a simply typed lambda-term $I:\tau$, Using $\epsilon:o$ and
- a simply typed lambda-term $\mathbf{F}: \mathbf{\tau} \to \mathbf{0}$, $\mathbf{b}: \mathbf{0} \to \mathbf{0}$, for all $\mathbf{b} \in \Gamma$.
- a simply typed lambda-term $T_a : \tau \to \tau$, for all $a \in \Sigma$.

Lambda transducers

Consider an input alphabet Σ , and an output alphabet Γ .

A lambda-transducer from Σ^* to Γ^* , consists of

- a simple type τ built from the base type o (using \rightarrow)
- a simply typed lambda-term I: τ,
 Using ε: o and
- a simply typed lambda-term $\mathbf{F}: \mathbf{\tau} \to \mathbf{0}$, $\mathbf{b}: \mathbf{0} \to \mathbf{0}$, for all $\mathbf{b} \in \Gamma$.
- a simply typed lambda-term $T_a : \tau \to \tau$, for all $a \in \Sigma$.

Given a word $u = a_1 a_2 ... a_n \in \Sigma^*$, the lambda-term

$$(T_{a1}; T_{a2}; ...; T_{an}; F) I: o$$

Can be totally beta-reduced (in finitely many steps) into a term which has the form (is equivalent to):

$$(b_1; b_2; ...; b_m) \epsilon$$

Consider an input alphabet Σ , and an output alphabet Γ .

A lambda-transducer from Σ^* to Γ^* , consists of

- a simple type τ built from the base type o (using \rightarrow)
- a simply typed lambda-term $I:\tau$, Using $\epsilon:o$ and
- a simply typed lambda-term $\mathbf{F}: \mathbf{\tau} \to \mathbf{0}$, $\mathbf{b}: \mathbf{0} \to \mathbf{0}$, for all $\mathbf{b} \in \Gamma$.
- a simply typed lambda-term $T_a : \tau \to \tau$, for all $a \in \Sigma$.

```
Given a word u=a_1a_2...a_n\in \Sigma^*, the lambda-term ; is the reverse (T_{a1}\;;\;T_{a2}\;;...\;;\;T_{an}\;;\;F)\;I\;:\;o composition
```

Can be totally beta-reduced (in finitely many steps) into a term which has the form (is equivalent to):

$$(b_1; b_2; ...; b_m) \varepsilon$$

Consider an input alphabet Σ , and an output alphabet Γ .

A lambda-transducer from Σ^* to Γ^* , consists of

- a simple type τ built from the base type o (using \rightarrow)
- a simply typed lambda-term $I:\tau$, Using $\epsilon:o$ and
- a simply typed lambda-term $\mathbf{F}: \mathbf{\tau} \to \mathbf{0}$, $\mathbf{b}: \mathbf{0} \to \mathbf{0}$, for all $\mathbf{b} \in \Gamma$.
- a simply typed lambda-term $T_a : \tau \longrightarrow \tau$, for all $a \in \Sigma$.

```
Given a word u = a_1 a_2 ... a_n \in \Sigma^*, the lambda-term ; is the reverse (T_{a1}\,;\,T_{a2}\,;...\,;\,T_{an}\,;\,F)\,I:o composition
```

Can be totally beta-reduced (in finitely many steps) into a term which has the form (is equivalent to):

$$(b_1; b_2; ...; b_m) \epsilon$$

The image of u by the lambda-transducer is b₁b₂...b_{m-1}b_m.

Example:

- $\tau := 0$
- $3 = 1 \epsilon$
- $F := \lambda x. x$
- $T_a := a ; a$
- $T_b := b ; b$

Example:

-
$$\tau := 0$$

$$- I := \varepsilon$$

-
$$F := \lambda x. x$$

-
$$T_a := a ; a$$

-
$$T_b := b ; b$$

$$(T_{a1}; T_{a2}; ...; T_{an}; F) I$$

= β $(a_1; a_1; a_2; a_2; ...; a_n; a_n) \epsilon$

Example:

-
$$\tau := 0$$

-
$$F := \lambda x. x$$

-
$$T_a := a ; a$$

-
$$T_b := b ; b$$

```
(T_{a1}; T_{a2}; ...; T_{an}; F) I
= \beta (a_1; a_1; a_2; a_2; ...; a_n; a_n) <math>\epsilon
```

Copies the input, while doubling each letter.

Example:

$$-\tau := 0$$

$$3 = 1 - \epsilon$$

-
$$F := \lambda x. x$$

-
$$T_a := a ; a$$

-
$$T_b := b ; b$$

Example:

-
$$\tau := O \longrightarrow O$$

-
$$I := \lambda x. x$$

-
$$F := \lambda f. f \epsilon$$

-
$$T_a := \lambda f. a ; f$$

-
$$T_b := \lambda f. b$$
; f

$$(T_{a1}; T_{a2}; ...; T_{an}; F) I$$

= β $(a_1; a_1; a_2; a_2; ...; a_n; a_n) \epsilon$

Copies the input, while doubling each letter.

Example:

-
$$\tau := 0$$

$$3 = 1 - \epsilon$$

-
$$F := \lambda x. x$$

-
$$T_a := a ; a$$

-
$$T_b := b ; b$$

Example:

-
$$\tau := O \longrightarrow O$$

-
$$I := \lambda x. x$$

-
$$F := \lambda f. f \epsilon$$

-
$$T_a := \lambda f. a ; f$$

-
$$T_b := \lambda f. b ; f$$

$$(T_{a1}; T_{a2}; ...; T_{an}; F) I$$

= β $(a_1; a_1; a_2; a_2; ...; a_n; a_n) $\epsilon$$

Copies the input, while doubling each letter.

Mirrors the input

Example:

$$- \tau := 0$$

$$3 = 1 = \epsilon$$

-
$$F := \lambda x. x$$

-
$$T_a := a ; a$$

-
$$T_b := b ; b$$

$(T_{a1}; T_{a2}; ...; T_{an}; F) I$ = β $(a_1; a_1; a_2; a_2; ...; a_n; a_n) <math>\epsilon$

Copies the input, while doubling each letter.

Example:

-
$$\tau := 0 \longrightarrow 0$$

-
$$I := \lambda x. x$$

-
$$F := \lambda f. f \epsilon$$

-
$$T_a := \lambda f. a ; f$$

-
$$T_b := \lambda f. b ; f$$

Mirrors the input

Lemma: Ariadne-transducers can be effectively transformed into equivalent lambda-transducers.

Example:

$$-\tau := 0$$

$$3 = 1 = \epsilon$$

-
$$F := \lambda x. x$$

-
$$T_a := a ; a$$

-
$$T_b := b ; b$$

$(T_{a1}; T_{a2}; ...; T_{an}; F) I$ = β $(a_1; a_1; a_2; a_2; ...; a_n; a_n) <math>\epsilon$

Copies the input, while doubling each letter.

Example:

-
$$\tau := 0 \longrightarrow 0$$

-
$$I := \lambda x. x$$

-
$$F := \lambda f. f \epsilon$$

-
$$T_a := \lambda f. a ; f$$

-
$$T_b := \lambda f. b ; f$$

Mirrors the input

Lemma: Ariadne-transducers can be effectively transformed into equivalent lambda-transducers.

The parameter k corresponds to the order of τ .

Lemma: The inverse image of a regular language by a lambda-transducers is regular.

Lemma: The inverse image of a regular language by a lambdatransducers is regular.

Proof: Consider a DFA for a language L, of states Q, and interpret

- the type o as the state Q
- $\tau \longrightarrow \tau'$ as the maps from the interpretation of τ to the interpretations of τ'
- ε as the initial state (in o)
- each letter a as its action on Q.

Lemma: The inverse image of a regular language by a lambdatransducers is regular.

Proof: Consider a DFA for a language L, of states Q, and interpret

- the type o as the state Q
- $\tau \longrightarrow \tau'$ as the maps from the interpretation of τ to the interpretations of τ'
- ε as the initial state (in o)
- each letter a as its action on Q.

Then the interpretation of the lambda-transducer is a DFA recognising the inverse image of L by the lambda transducer.

Lemma: The inverse image of a regular language by a lambdatransducers is regular.

Proof: Consider a DFA for a language L, of states Q, and interpret

- the type o as the state Q
- $\tau \longrightarrow \tau'$ as the maps from the interpretation of τ to the interpretations of τ'
- ε as the initial state (in o)
- each letter a as its action on Q.

Then the interpretation of the lambda-transducer is a DFA recognising the inverse image of L by the lambda transducer.

Corollary: MSO-set-interpretations preserve regular language of strings by inverse image.

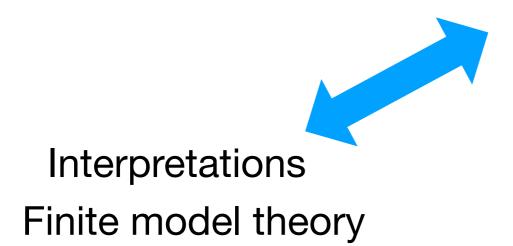
Conclusion

Finite state transducers

Interpretations
Finite model theory

Conclusion

Finite state transducers



Simply typed lambda-calculus

These correspondances form an active topic of research that tie together two sides of logic: model theory and proof theory!

Conclusion

Finite state transducers

Conjecture: Reverse holds under an exponential growth assumption.

Interpretations
Finite model theory

Simply typed lambda-calculus

These correspondances form an active topic of research that tie together two sides of logic: model theory and proof theory!