Limits of sequences of finite structures from monadically stable classes

Samuel Braunfeld (Charles University, Czech Academy of Sciences) Joint work with Jarik Nešetřil and Patrice Ossona de Mendez

May 27, 2025 Finite and Algorithmic Model Theory

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

BOREL STRUCTURES AND MODELINGS

Definition

A (*totally*) *Borel structure* is a structure whose domain is a standard Borel space of size 2^{\aleph_0} (i.e. [0, 1] with its Borel sigma-algebra) such that every parameter-definable relation is Borel (in the product σ -algebra).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

BOREL STRUCTURES AND MODELINGS

Definition

A (*totally*) *Borel structure* is a structure whose domain is a standard Borel space of size 2^{\aleph_0} (i.e. [0, 1] with its Borel sigma-algebra) such that every parameter-definable relation is Borel (in the product σ -algebra).

Definition

A *modeling* is a Borel structure equipped with a Borel probability measure μ .

BOREL STRUCTURES AND MODELINGS

Definition

A (*totally*) *Borel structure* is a structure whose domain is a standard Borel space of size 2^{\aleph_0} (i.e. [0, 1] with its Borel sigma-algebra) such that every parameter-definable relation is Borel (in the product σ -algebra).

Definition

A *modeling* is a Borel structure equipped with a Borel probability measure μ .

• We may measure higher-arity definable relations using the product measure.

- $(G_n)_{n \in \omega}$ a sequence of finite structures with $|G_n| \to \infty$.
- We equip each G_n with the normalized counting measure μ_n , so $\mu_n(\phi(\bar{x})) = |\phi(G_n)|/|G_n|^{|\bar{x}|}$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- $(G_n)_{n \in \omega}$ a sequence of finite structures with $|G_n| \to \infty$.
- We equip each G_n with the normalized counting measure μ_n , so $\mu_n(\phi(\bar{x})) = |\phi(G_n)|/|G_n|^{|\bar{x}|}$.

Definition

 $(G_n)_{n \in \omega}$ is *FO-convergent* if $\lim_{n \to \infty} \mu_n(\phi(\bar{x}))$ exists for every formula $\phi(\bar{x})$. (Sentences should be asymptotically true or false.)

- $(G_n)_{n \in \omega}$ a sequence of finite structures with $|G_n| \to \infty$.
- We equip each G_n with the normalized counting measure μ_n , so $\mu_n(\phi(\bar{x})) = |\phi(G_n)|/|G_n|^{|\bar{x}|}$.

Definition

 $(G_n)_{n \in \omega}$ is *FO-convergent* if $\lim_{n \to \infty} \mu_n(\phi(\bar{x}))$ exists for every formula $\phi(\bar{x})$. (Sentences should be asymptotically true or false.)

• Fragments of FO give classical convergence notions.

- $(G_n)_{n \in \omega}$ a sequence of finite structures with $|G_n| \to \infty$.
- We equip each G_n with the normalized counting measure μ_n , so $\mu_n(\phi(\bar{x})) = |\phi(G_n)|/|G_n|^{|\bar{x}|}$.

Definition

 $(G_n)_{n \in \omega}$ is *FO-convergent* if $\lim_{n \to \infty} \mu_n(\phi(\bar{x}))$ exists for every formula $\phi(\bar{x})$. (Sentences should be asymptotically true or false.)

• Fragments of FO give classical convergence notions.

Definition

Let (M, μ) be a modeling. Then (M, μ) is a *modeling limit* of $(G_n)_{n \in \omega}$ if $\mu_M(\phi(\bar{x})) = \lim_{n \to \infty} \mu_n(\phi(\bar{x}))$.

- $(G_n)_{n \in \omega}$ a sequence of finite structures with $|G_n| \to \infty$.
- We equip each G_n with the normalized counting measure μ_n , so $\mu_n(\phi(\bar{x})) = |\phi(G_n)|/|G_n|^{|\bar{x}|}$.

Definition

 $(G_n)_{n \in \omega}$ is *FO-convergent* if $\lim_{n \to \infty} \mu_n(\phi(\bar{x}))$ exists for every formula $\phi(\bar{x})$. (Sentences should be asymptotically true or false.)

• Fragments of FO give classical convergence notions.

Definition

Let (M, μ) be a modeling. Then (M, μ) is a *modeling limit* of $(G_n)_{n \in \omega}$ if $\mu_M(\phi(\bar{x})) = \lim_{n \to \infty} \mu_n(\phi(\bar{x}))$.

• Note an ultraproduct almost works, but is not Borel.

• Not every FO-convergent sequence of graphs has a modeling limit

- Not every FO-convergent sequence of graphs has a modeling limit
- E.g. a (quasi)random sequence

- Not every FO-convergent sequence of graphs has a modeling limit
- E.g. a (quasi)random sequence

Theorem (Nešetřil, Ossona de Mendez; flawed)

Every FO-convergent sequence of graphs from a nowhere dense class has a modeling limit.

- Not every FO-convergent sequence of graphs has a modeling limit
- E.g. a (quasi)random sequence

Theorem (Nešetřil, Ossona de Mendez; flawed)

Every FO-convergent sequence of graphs from a nowhere dense class has a modeling limit.

Theorem (B., Nešetřil, Ossona de Mendez)

Every FO-convergent sequence of graphs from a monadically stable class has a modeling limit.

- Not every FO-convergent sequence of graphs has a modeling limit
- E.g. a (quasi)random sequence

Theorem (Nešetřil, Ossona de Mendez; flawed)

Every FO-convergent sequence of graphs from a nowhere dense class has a modeling limit.

Theorem (B., Nešetřil, Ossona de Mendez)

Every FO-convergent sequence of graphs from a monadically stable class has a modeling limit.

• Really a purely infinitary theorem, applied to the ultraproduct.

Sketching the proof

Sketching the proof

< □ > < @ > < E > < E > E のQ@

SKETCHING THE PROOF

SKETCHING THE PROOF

< □ > < @ > < E > < E > E のQ@

SKETCHING THE PROOF

< □ > < @ > < E > < E > E のQ@

Conjecture (B. Szegedy)

Let G be an edge-Lebesgue graph (random-free graphon). Then there is a edge-Borel graph G' equivalent to G removing all induced subgraphs that appear with measure 0.

Conjecture (B. Szegedy)

Let G be an edge-Lebesgue graph (random-free graphon). Then there is a edge-Borel graph G' equivalent to G removing all induced subgraphs that appear with measure 0.

Theorem (B., Nešetřil, Ossona de Mendez)

This is true if G is edge-stable (i.e., no large half-graphs).

Conjecture (B. Szegedy)

Let G be an edge-Lebesgue graph (random-free graphon). Then there is a edge-Borel graph G' equivalent to G removing all induced subgraphs that appear with measure 0.

Theorem (B., Nešetřil, Ossona de Mendez)

This is true if G is edge-stable (i.e., no large half-graphs).

• Similar to the previous construction, but

• we only realize types from the support of the measure

うして 山田 マイボット ボット シックション

Conjecture (B. Szegedy)

Let G be an edge-Lebesgue graph (random-free graphon). Then there is a edge-Borel graph G' equivalent to G removing all induced subgraphs that appear with measure 0.

Theorem (B., Nešetřil, Ossona de Mendez)

This is true if G is edge-stable (i.e., no large half-graphs).

- Similar to the previous construction, but
 - we only realize types from the support of the measure
 we don't worry about making *B* ≻ *N*

QUESTIONS

• Can we (re-)prove something with modeling limits? In particular, in a way that is simpler than with an ultraproduct?

QUESTIONS

- Can we (re-)prove something with modeling limits? In particular, in a way that is simpler than with an ultraproduct?
- Can we obtain the mass transport principle (double-counting edges between measurable sets)? This needs a different topology on our modeling.

QUESTIONS

- Can we (re-)prove something with modeling limits? In particular, in a way that is simpler than with an ultraproduct?
- Can we obtain the mass transport principle (double-counting edges between measurable sets)? This needs a different topology on our modeling.
- Modeling limits for sequences from monadically NIP/dependent classes? (Ongoing work with Pierre Simon)

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~