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Modeling limits

BOREL STRUCTURES AND MODELINGS

Definition
A (totally) Borel structure is a structure whose domain is a
standard Borel space of size 2ℵ0 (i.e. [0, 1] with its Borel
sigma-algebra) such that every parameter-definable relation is
Borel (in the product σ-algebra).

Definition
A modeling is a Borel structure equipped with a Borel probability
measure µ.

We may measure higher-arity definable relations using the
product measure.
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FO-CONVERGENCE AND MODELING LIMITS

(Gn)n∈ω a sequence of finite structures with |Gn| → ∞.
We equip each Gn with the normalized counting measure
µn, so µn(ϕ(x̄)) = |ϕ(Gn)|/|Gn||x̄|.

Definition
(Gn)n∈ω is FO-convergent if limn→∞ µn(ϕ(x̄)) exists for every
formula ϕ(x̄). (Sentences should be asymptotically true or false.)

Fragments of FO give classical convergence notions.

Definition
Let (M, µ) be a modeling. Then (M, µ) is a modeling limit of
(Gn)n∈ω if µM(ϕ(x̄)) = limn→∞ µn(ϕ(x̄)).

Note an ultraproduct almost works, but is not Borel.
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Modeling limits

WHEN DO MODELING LIMITS EXIST?

Not every FO-convergent sequence of graphs has a
modeling limit

E.g. a (quasi)random sequence

Theorem (Nešetřil, Ossona de Mendez; flawed)
Every FO-convergent sequence of graphs from a nowhere dense class
has a modeling limit.

Theorem (B., Nešetřil, Ossona de Mendez)
Every FO-convergent sequence of graphs from a monadically stable
class has a modeling limit.

Really a purely infinitary theorem, applied to the
ultraproduct.
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Modeling limits

A BOREL REMOVAL LEMMA

Conjecture (B. Szegedy)
Let G be an edge-Lebesgue graph (random-free graphon). Then there is
a edge-Borel graph G′ equivalent to G removing all induced subgraphs
that appear with measure 0.

Theorem (B., Nešetřil, Ossona de Mendez)
This is true if G is edge-stable (i.e., no large half-graphs).

Similar to the previous construction, but
1 we only realize types from the support of the measure
2 we don’t worry about making B ≻ N
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QUESTIONS

Can we (re-)prove something with modeling limits? In
particular, in a way that is simpler than with an
ultraproduct?

Can we obtain the mass transport principle
(double-counting edges between measurable sets)? This
needs a different topology on our modeling.
Modeling limits for sequences from monadically
NIP/dependent classes? (Ongoing work with Pierre Simon)
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