
Guarded Fragments Meet Dynamic Logic
The Story of Regular Guards

Bartosz Jan Bednarczyk bartek@cs.uni.wroc.pl
Technische Universität Wien & Uniwersytet Wrocławski

Powered by BeamerikZ

https://www.mimuw.edu.pl/~mskrzypczak/projects/beamerikz/

Brief Introduction to Modal Logic

• Modal logic is everywhere: philosophy, temporal logic (CTL), description logic (ALC), and more.

|=

Syntax & Semantics via First-Order Structures
φ, φ′ ::= p | ¬φ | φ ∧ φ′ | φ ∨ φ′ | φ → φ′ | φ ↔ φ′ | ⟨R⟩φ | [R]φ

A :=
1

2

3

4

5

R

T

R

R, S

TT

T
p, q p

qq

q
• (A, 1) |= p• (A, 1) |= p ∧ q ∧ ¬r
• (A, 1) |= ⟨R⟩p ∧ ⟨R⟩q
• (A, 2) |= [R] q
• (A, 1) |= ⟨R⟩ (p ∧ [R] q)

Multi-modal logic (with converse) translates into first-order logic via the standard translation.
⟨R⟩

(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 1 / 9

Brief Introduction to Modal Logic
• Modal logic is everywhere:

philosophy, temporal logic (CTL), description logic (ALC), and more.

|=

Syntax & Semantics via First-Order Structures
φ, φ′ ::= p | ¬φ | φ ∧ φ′ | φ ∨ φ′ | φ → φ′ | φ ↔ φ′ | ⟨R⟩φ | [R]φ

A :=
1

2

3

4

5

R

T

R

R, S

TT

T
p, q p

qq

q
• (A, 1) |= p• (A, 1) |= p ∧ q ∧ ¬r
• (A, 1) |= ⟨R⟩p ∧ ⟨R⟩q
• (A, 2) |= [R] q
• (A, 1) |= ⟨R⟩ (p ∧ [R] q)

Multi-modal logic (with converse) translates into first-order logic via the standard translation.
⟨R⟩

(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 1 / 9

Brief Introduction to Modal Logic
• Modal logic is everywhere: philosophy,

temporal logic (CTL), description logic (ALC), and more.

|=

Syntax & Semantics via First-Order Structures
φ, φ′ ::= p | ¬φ | φ ∧ φ′ | φ ∨ φ′ | φ → φ′ | φ ↔ φ′ | ⟨R⟩φ | [R]φ

A :=
1

2

3

4

5

R

T

R

R, S

TT

T
p, q p

qq

q
• (A, 1) |= p• (A, 1) |= p ∧ q ∧ ¬r
• (A, 1) |= ⟨R⟩p ∧ ⟨R⟩q
• (A, 2) |= [R] q
• (A, 1) |= ⟨R⟩ (p ∧ [R] q)

Multi-modal logic (with converse) translates into first-order logic via the standard translation.
⟨R⟩

(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 1 / 9

Brief Introduction to Modal Logic
• Modal logic is everywhere: philosophy, temporal logic (CTL),

description logic (ALC), and more.

|=

Syntax & Semantics via First-Order Structures
φ, φ′ ::= p | ¬φ | φ ∧ φ′ | φ ∨ φ′ | φ → φ′ | φ ↔ φ′ | ⟨R⟩φ | [R]φ

A :=
1

2

3

4

5

R

T

R

R, S

TT

T
p, q p

qq

q
• (A, 1) |= p• (A, 1) |= p ∧ q ∧ ¬r
• (A, 1) |= ⟨R⟩p ∧ ⟨R⟩q
• (A, 2) |= [R] q
• (A, 1) |= ⟨R⟩ (p ∧ [R] q)

Multi-modal logic (with converse) translates into first-order logic via the standard translation.
⟨R⟩

(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 1 / 9

Brief Introduction to Modal Logic
• Modal logic is everywhere: philosophy, temporal logic (CTL), description logic (ALC), and more.

|=

Syntax & Semantics via First-Order Structures
φ, φ′ ::= p | ¬φ | φ ∧ φ′ | φ ∨ φ′ | φ → φ′ | φ ↔ φ′ | ⟨R⟩φ | [R]φ

A :=
1

2

3

4

5

R

T

R

R, S

TT

T
p, q p

qq

q
• (A, 1) |= p• (A, 1) |= p ∧ q ∧ ¬r
• (A, 1) |= ⟨R⟩p ∧ ⟨R⟩q
• (A, 2) |= [R] q
• (A, 1) |= ⟨R⟩ (p ∧ [R] q)

Multi-modal logic (with converse) translates into first-order logic via the standard translation.
⟨R⟩

(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 1 / 9

Brief Introduction to Modal Logic
• Modal logic is everywhere: philosophy, temporal logic (CTL), description logic (ALC), and more.

|=

Syntax & Semantics via First-Order Structures

φ, φ′ ::= p | ¬φ | φ ∧ φ′ | φ ∨ φ′ | φ → φ′ | φ ↔ φ′ | ⟨R⟩φ | [R]φ

A :=
1

2

3

4

5

R

T

R

R, S

TT

T
p, q p

qq

q
• (A, 1) |= p• (A, 1) |= p ∧ q ∧ ¬r
• (A, 1) |= ⟨R⟩p ∧ ⟨R⟩q
• (A, 2) |= [R] q
• (A, 1) |= ⟨R⟩ (p ∧ [R] q)

Multi-modal logic (with converse) translates into first-order logic via the standard translation.
⟨R⟩

(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 1 / 9

Brief Introduction to Modal Logic
• Modal logic is everywhere: philosophy, temporal logic (CTL), description logic (ALC), and more.

|=

Syntax & Semantics via First-Order Structures
φ, φ′ ::= p | ¬φ | φ ∧ φ′ | φ ∨ φ′ | φ → φ′ | φ ↔ φ′ | ⟨R⟩φ | [R]φ

A :=
1

2

3

4

5

R

T

R

R, S

TT

T
p, q p

qq

q
• (A, 1) |= p• (A, 1) |= p ∧ q ∧ ¬r
• (A, 1) |= ⟨R⟩p ∧ ⟨R⟩q
• (A, 2) |= [R] q
• (A, 1) |= ⟨R⟩ (p ∧ [R] q)

Multi-modal logic (with converse) translates into first-order logic via the standard translation.
⟨R⟩

(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 1 / 9

Brief Introduction to Modal Logic
• Modal logic is everywhere: philosophy, temporal logic (CTL), description logic (ALC), and more.

|=

Syntax & Semantics via First-Order Structures
φ, φ′ ::= p | ¬φ | φ ∧ φ′ | φ ∨ φ′ | φ → φ′ | φ ↔ φ′ | ⟨R⟩φ | [R]φ

A :=
1

2

3

4

5

R

T

R

R, S

TT

T
p, q p

qq

q

• (A, 1) |= p• (A, 1) |= p ∧ q ∧ ¬r
• (A, 1) |= ⟨R⟩p ∧ ⟨R⟩q
• (A, 2) |= [R] q
• (A, 1) |= ⟨R⟩ (p ∧ [R] q)

Multi-modal logic (with converse) translates into first-order logic via the standard translation.
⟨R⟩

(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 1 / 9

Brief Introduction to Modal Logic
• Modal logic is everywhere: philosophy, temporal logic (CTL), description logic (ALC), and more.

|=

Syntax & Semantics via First-Order Structures
φ, φ′ ::= p | ¬φ | φ ∧ φ′ | φ ∨ φ′ | φ → φ′ | φ ↔ φ′ | ⟨R⟩φ | [R]φ

A :=
1

2

3

4

5

R

T

R

R, S

TT

T
p, q p

qq

q
• (A, 1) |= p

• (A, 1) |= p ∧ q ∧ ¬r
• (A, 1) |= ⟨R⟩p ∧ ⟨R⟩q
• (A, 2) |= [R] q
• (A, 1) |= ⟨R⟩ (p ∧ [R] q)

Multi-modal logic (with converse) translates into first-order logic via the standard translation.
⟨R⟩

(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 1 / 9

Brief Introduction to Modal Logic
• Modal logic is everywhere: philosophy, temporal logic (CTL), description logic (ALC), and more.

|=

Syntax & Semantics via First-Order Structures
φ, φ′ ::= p | ¬φ | φ ∧ φ′ | φ ∨ φ′ | φ → φ′ | φ ↔ φ′ | ⟨R⟩φ | [R]φ

A :=
1

2

3

4

5

R

T

R

R, S

TT

T
p, q p

qq

q

• (A, 1) |= p• (A, 1) |= p ∧ q ∧ ¬r
• (A, 1) |= ⟨R⟩p ∧ ⟨R⟩q
• (A, 2) |= [R] q
• (A, 1) |= ⟨R⟩ (p ∧ [R] q)

Multi-modal logic (with converse) translates into first-order logic via the standard translation.
⟨R⟩

(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 1 / 9

Brief Introduction to Modal Logic
• Modal logic is everywhere: philosophy, temporal logic (CTL), description logic (ALC), and more.

|=

Syntax & Semantics via First-Order Structures
φ, φ′ ::= p | ¬φ | φ ∧ φ′ | φ ∨ φ′ | φ → φ′ | φ ↔ φ′ | ⟨R⟩φ | [R]φ

A :=
1

2

3

4

5

R

T

R

R, S

TT

T
p, q p

qq

q

• (A, 1) |= p

• (A, 1) |= p ∧ q ∧ ¬r

• (A, 1) |= ⟨R⟩p ∧ ⟨R⟩q
• (A, 2) |= [R] q
• (A, 1) |= ⟨R⟩ (p ∧ [R] q)

Multi-modal logic (with converse) translates into first-order logic via the standard translation.
⟨R⟩

(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 1 / 9

Brief Introduction to Modal Logic
• Modal logic is everywhere: philosophy, temporal logic (CTL), description logic (ALC), and more.

|=

Syntax & Semantics via First-Order Structures
φ, φ′ ::= p | ¬φ | φ ∧ φ′ | φ ∨ φ′ | φ → φ′ | φ ↔ φ′ | ⟨R⟩φ | [R]φ

A :=
1

2

3

4

5

R

T

R

R, S

TT

T
p, q p

qq

q

• (A, 1) |= p

• (A, 1) |= p ∧ q ∧ ¬r
• (A, 1) |= ⟨R⟩p ∧ ⟨R⟩q

• (A, 2) |= [R] q
• (A, 1) |= ⟨R⟩ (p ∧ [R] q)

Multi-modal logic (with converse) translates into first-order logic via the standard translation.
⟨R⟩

(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 1 / 9

Brief Introduction to Modal Logic
• Modal logic is everywhere: philosophy, temporal logic (CTL), description logic (ALC), and more.

|=

Syntax & Semantics via First-Order Structures
φ, φ′ ::= p | ¬φ | φ ∧ φ′ | φ ∨ φ′ | φ → φ′ | φ ↔ φ′ | ⟨R⟩φ | [R]φ

A :=
1

2

3

4

5

R

T

R

R, S

TT

T
p, q p

qq

q

• (A, 1) |= p

• (A, 1) |= p ∧ q ∧ ¬r
• (A, 1) |= ⟨R⟩p ∧ ⟨R⟩q
• (A, 2) |= [R] q

• (A, 1) |= ⟨R⟩ (p ∧ [R] q)

Multi-modal logic (with converse) translates into first-order logic via the standard translation.
⟨R⟩

(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 1 / 9

Brief Introduction to Modal Logic
• Modal logic is everywhere: philosophy, temporal logic (CTL), description logic (ALC), and more.

|=

Syntax & Semantics via First-Order Structures
φ, φ′ ::= p | ¬φ | φ ∧ φ′ | φ ∨ φ′ | φ → φ′ | φ ↔ φ′ | ⟨R⟩φ | [R]φ

A :=
1

2

3

4

5

R

T

R

R, S

TT

T
p, q p

qq

q

• (A, 1) |= p

• (A, 1) |= p ∧ q ∧ ¬r
• (A, 1) |= ⟨R⟩p ∧ ⟨R⟩q
• (A, 2) |= [R] q
• (A, 1) |= ⟨R⟩ (p ∧ [R] q)

Multi-modal logic (with converse) translates into first-order logic via the standard translation.
⟨R⟩

(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 1 / 9

Brief Introduction to Modal Logic
• Modal logic is everywhere: philosophy, temporal logic (CTL), description logic (ALC), and more.

|=

Syntax & Semantics via First-Order Structures
φ, φ′ ::= p | ¬φ | φ ∧ φ′ | φ ∨ φ′ | φ → φ′ | φ ↔ φ′ | ⟨R⟩φ | [R]φ

A :=
1

2

3

4

5

R

T

R

R, S

TT

T
p, q p

qq

q

• (A, 1) |= p

• (A, 1) |= p ∧ q ∧ ¬r
• (A, 1) |= ⟨R⟩p ∧ ⟨R⟩q
• (A, 2) |= [R] q
• (A, 1) |= ⟨R⟩ (p ∧ [R] q)

Multi-modal logic (with converse) translates into first-order logic via the standard translation.

⟨R⟩
(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 1 / 9

Brief Introduction to Modal Logic
• Modal logic is everywhere: philosophy, temporal logic (CTL), description logic (ALC), and more.

|=

Syntax & Semantics via First-Order Structures
φ, φ′ ::= p | ¬φ | φ ∧ φ′ | φ ∨ φ′ | φ → φ′ | φ ↔ φ′ | ⟨R⟩φ | [R]φ

A :=
1

2

3

4

5

R

T

R

R, S

TT

T
p, q p

qq

q

• (A, 1) |= p

• (A, 1) |= p ∧ q ∧ ¬r
• (A, 1) |= ⟨R⟩p ∧ ⟨R⟩q
• (A, 2) |= [R] q
• (A, 1) |= ⟨R⟩ (p ∧ [R] q)

Multi-modal logic (with converse) translates into first-order logic via the standard translation.
⟨R⟩

(
(p ∧ ¬q) ∨

[
S̄
]
r
)

⇝ φ(x) := ∃y
(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 1 / 9

Brief Introduction to Modal Logic
• Modal logic is everywhere: philosophy, temporal logic (CTL), description logic (ALC), and more.

|=

Syntax & Semantics via First-Order Structures
φ, φ′ ::= p | ¬φ | φ ∧ φ′ | φ ∨ φ′ | φ → φ′ | φ ↔ φ′ | ⟨R⟩φ | [R]φ

A :=
1

2

3

4

5

R

T

R

R, S

TT

T
p, q p

qq

q

• (A, 1) |= p

• (A, 1) |= p ∧ q ∧ ¬r
• (A, 1) |= ⟨R⟩p ∧ ⟨R⟩q
• (A, 2) |= [R] q
• (A, 1) |= ⟨R⟩ (p ∧ [R] q)

Multi-modal logic (with converse) translates into first-order logic via the standard translation.
⟨R⟩

(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])
Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 1 / 9

The Guarded Fragment GF of First-Order Logic [Andreka et al. 1998]

• The guarded fragment of FO is obtained by relativising quantifiers by atoms.
• ∃y⃗ α(x⃗ , y⃗)∧φ(x⃗ , y⃗),∀y⃗ α(x⃗ , y⃗)→φ(x⃗ , y⃗) – guard must cover free variables of φ.

φ, φ′ ::= R(x̄) | ¬φ | φ ∧ φ′ | ∃x φ(x) | ∀x φ(x) | ∀x̄ α(x̄) → φ(x̄) | ∃x̄ α(x̄) ∧ φ(x̄)
Example 1. Some artist admires only beekeepers

∃x artst(x) ∧ ∀y (adm(x , y) → bkpr(y))
Example 2. Every artist envies every beekeeper he admires

∀x artst(x) → ∀y [adm(x , y) → (bkpr(y) → env(x , y))]
Coexample 3. Every artist admires every beekeeper

∀x (artst(x) → ∀y (bkpr(y) → adm(x , y)))

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 2 / 9

The Guarded Fragment GF of First-Order Logic [Andreka et al. 1998]

• The guarded fragment of FO is obtained by relativising quantifiers by atoms.
• ∃y⃗ α(x⃗ , y⃗)∧φ(x⃗ , y⃗),∀y⃗ α(x⃗ , y⃗)→φ(x⃗ , y⃗) – guard must cover free variables of φ.

φ, φ′ ::= R(x̄) | ¬φ | φ ∧ φ′ | ∃x φ(x) | ∀x φ(x) | ∀x̄ α(x̄) → φ(x̄) | ∃x̄ α(x̄) ∧ φ(x̄)
Example 1. Some artist admires only beekeepers

∃x artst(x) ∧ ∀y (adm(x , y) → bkpr(y))
Example 2. Every artist envies every beekeeper he admires

∀x artst(x) → ∀y [adm(x , y) → (bkpr(y) → env(x , y))]
Coexample 3. Every artist admires every beekeeper

∀x (artst(x) → ∀y (bkpr(y) → adm(x , y)))

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 2 / 9

The Guarded Fragment GF of First-Order Logic [Andreka et al. 1998]

• The guarded fragment of FO is obtained by relativising quantifiers by atoms.

• ∃y⃗ α(x⃗ , y⃗)∧φ(x⃗ , y⃗),∀y⃗ α(x⃗ , y⃗)→φ(x⃗ , y⃗) – guard must cover free variables of φ.
φ, φ′ ::= R(x̄) | ¬φ | φ ∧ φ′ | ∃x φ(x) | ∀x φ(x) | ∀x̄ α(x̄) → φ(x̄) | ∃x̄ α(x̄) ∧ φ(x̄)

Example 1. Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y) → bkpr(y))

Example 2. Every artist envies every beekeeper he admires
∀x artst(x) → ∀y [adm(x , y) → (bkpr(y) → env(x , y))]

Coexample 3. Every artist admires every beekeeper
∀x (artst(x) → ∀y (bkpr(y) → adm(x , y)))

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 2 / 9

The Guarded Fragment GF of First-Order Logic [Andreka et al. 1998]

• The guarded fragment of FO is obtained by relativising quantifiers by atoms.
• ∃y⃗ α(x⃗ , y⃗)∧φ(x⃗ , y⃗),∀y⃗ α(x⃗ , y⃗)→φ(x⃗ , y⃗) – guard must cover free variables of φ.

φ, φ′ ::= R(x̄) | ¬φ | φ ∧ φ′ | ∃x φ(x) | ∀x φ(x) | ∀x̄ α(x̄) → φ(x̄) | ∃x̄ α(x̄) ∧ φ(x̄)
Example 1. Some artist admires only beekeepers

∃x artst(x) ∧ ∀y (adm(x , y) → bkpr(y))
Example 2. Every artist envies every beekeeper he admires

∀x artst(x) → ∀y [adm(x , y) → (bkpr(y) → env(x , y))]
Coexample 3. Every artist admires every beekeeper

∀x (artst(x) → ∀y (bkpr(y) → adm(x , y)))

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 2 / 9

The Guarded Fragment GF of First-Order Logic [Andreka et al. 1998]

• The guarded fragment of FO is obtained by relativising quantifiers by atoms.
• ∃y⃗ α(x⃗ , y⃗)∧φ(x⃗ , y⃗),∀y⃗ α(x⃗ , y⃗)→φ(x⃗ , y⃗) – guard must cover free variables of φ.

φ, φ′ ::= R(x̄) | ¬φ | φ ∧ φ′ | ∃x φ(x) | ∀x φ(x) | ∀x̄ α(x̄) → φ(x̄) | ∃x̄ α(x̄) ∧ φ(x̄)

Example 1. Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y) → bkpr(y))

Example 2. Every artist envies every beekeeper he admires
∀x artst(x) → ∀y [adm(x , y) → (bkpr(y) → env(x , y))]

Coexample 3. Every artist admires every beekeeper
∀x (artst(x) → ∀y (bkpr(y) → adm(x , y)))

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 2 / 9

The Guarded Fragment GF of First-Order Logic [Andreka et al. 1998]

• The guarded fragment of FO is obtained by relativising quantifiers by atoms.
• ∃y⃗ α(x⃗ , y⃗)∧φ(x⃗ , y⃗),∀y⃗ α(x⃗ , y⃗)→φ(x⃗ , y⃗) – guard must cover free variables of φ.

φ, φ′ ::= R(x̄) | ¬φ | φ ∧ φ′ | ∃x φ(x) | ∀x φ(x) | ∀x̄ α(x̄) → φ(x̄) | ∃x̄ α(x̄) ∧ φ(x̄)
Example 1. Some artist admires only beekeepers

∃x artst(x) ∧ ∀y (adm(x , y) → bkpr(y))

Example 2. Every artist envies every beekeeper he admires
∀x artst(x) → ∀y [adm(x , y) → (bkpr(y) → env(x , y))]

Coexample 3. Every artist admires every beekeeper
∀x (artst(x) → ∀y (bkpr(y) → adm(x , y)))

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 2 / 9

The Guarded Fragment GF of First-Order Logic [Andreka et al. 1998]

• The guarded fragment of FO is obtained by relativising quantifiers by atoms.
• ∃y⃗ α(x⃗ , y⃗)∧φ(x⃗ , y⃗),∀y⃗ α(x⃗ , y⃗)→φ(x⃗ , y⃗) – guard must cover free variables of φ.

φ, φ′ ::= R(x̄) | ¬φ | φ ∧ φ′ | ∃x φ(x) | ∀x φ(x) | ∀x̄ α(x̄) → φ(x̄) | ∃x̄ α(x̄) ∧ φ(x̄)
Example 1. Some artist admires only beekeepers

∃x artst(x) ∧ ∀y (adm(x , y) → bkpr(y))
Example 2. Every artist envies every beekeeper he admires

∀x artst(x) → ∀y [adm(x , y) → (bkpr(y) → env(x , y))]

Coexample 3. Every artist admires every beekeeper
∀x (artst(x) → ∀y (bkpr(y) → adm(x , y)))

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 2 / 9

The Guarded Fragment GF of First-Order Logic [Andreka et al. 1998]

• The guarded fragment of FO is obtained by relativising quantifiers by atoms.
• ∃y⃗ α(x⃗ , y⃗)∧φ(x⃗ , y⃗),∀y⃗ α(x⃗ , y⃗)→φ(x⃗ , y⃗) – guard must cover free variables of φ.

φ, φ′ ::= R(x̄) | ¬φ | φ ∧ φ′ | ∃x φ(x) | ∀x φ(x) | ∀x̄ α(x̄) → φ(x̄) | ∃x̄ α(x̄) ∧ φ(x̄)
Example 1. Some artist admires only beekeepers

∃x artst(x) ∧ ∀y (adm(x , y) → bkpr(y))
Example 2. Every artist envies every beekeeper he admires

∀x artst(x) → ∀y [adm(x , y) → (bkpr(y) → env(x , y))]
Coexample 3. Every artist admires every beekeeper

∀x (artst(x) → ∀y (bkpr(y) → adm(x , y)))
Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 2 / 9

Standard Translation From Modal Logics to First-Order Logic

• Recall our translation from modal logic to the guarded fragment.
⟨R⟩

(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

• What about other classical modal logics from the modal cube?
Not in GF! It cannot express transitivity/equivalence/Euclidean/etc.

Even worse: the satisfiability problem for GF with transitive relations is undecidable!
Guarded Fragment with Semantically Constrained Guards

• Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: ≈ + expon., composition, conj. of TG

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 3 / 9

Standard Translation From Modal Logics to First-Order Logic
• Recall our translation from modal logic to the guarded fragment.

⟨R⟩
(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

• What about other classical modal logics from the modal cube?
Not in GF! It cannot express transitivity/equivalence/Euclidean/etc.

Even worse: the satisfiability problem for GF with transitive relations is undecidable!
Guarded Fragment with Semantically Constrained Guards

• Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: ≈ + expon., composition, conj. of TG

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 3 / 9

Standard Translation From Modal Logics to First-Order Logic
• Recall our translation from modal logic to the guarded fragment.

⟨R⟩
(
(p ∧ ¬q) ∨

[
S̄
]
r
)

⇝ φ(x) := ∃y
(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

• What about other classical modal logics from the modal cube?
Not in GF! It cannot express transitivity/equivalence/Euclidean/etc.

Even worse: the satisfiability problem for GF with transitive relations is undecidable!
Guarded Fragment with Semantically Constrained Guards

• Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: ≈ + expon., composition, conj. of TG

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 3 / 9

Standard Translation From Modal Logics to First-Order Logic
• Recall our translation from modal logic to the guarded fragment.

⟨R⟩
(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

• What about other classical modal logics from the modal cube?
Not in GF! It cannot express transitivity/equivalence/Euclidean/etc.

Even worse: the satisfiability problem for GF with transitive relations is undecidable!
Guarded Fragment with Semantically Constrained Guards

• Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: ≈ + expon., composition, conj. of TG

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 3 / 9

Standard Translation From Modal Logics to First-Order Logic
• Recall our translation from modal logic to the guarded fragment.

⟨R⟩
(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

• What about other classical modal logics from the modal cube?

Not in GF! It cannot express transitivity/equivalence/Euclidean/etc.

Even worse: the satisfiability problem for GF with transitive relations is undecidable!
Guarded Fragment with Semantically Constrained Guards

• Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: ≈ + expon., composition, conj. of TG

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 3 / 9

Standard Translation From Modal Logics to First-Order Logic
• Recall our translation from modal logic to the guarded fragment.

⟨R⟩
(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

• What about other classical modal logics from the modal cube?
Not in GF!

It cannot express transitivity/equivalence/Euclidean/etc.

Even worse: the satisfiability problem for GF with transitive relations is undecidable!
Guarded Fragment with Semantically Constrained Guards

• Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: ≈ + expon., composition, conj. of TG

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 3 / 9

Standard Translation From Modal Logics to First-Order Logic
• Recall our translation from modal logic to the guarded fragment.

⟨R⟩
(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

• What about other classical modal logics from the modal cube?
Not in GF! It cannot express transitivity/equivalence/Euclidean/etc.

Even worse: the satisfiability problem for GF with transitive relations is undecidable!
Guarded Fragment with Semantically Constrained Guards

• Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: ≈ + expon., composition, conj. of TG

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 3 / 9

Standard Translation From Modal Logics to First-Order Logic
• Recall our translation from modal logic to the guarded fragment.

⟨R⟩
(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

• What about other classical modal logics from the modal cube?
Not in GF! It cannot express transitivity/equivalence/Euclidean/etc.

Even worse: the satisfiability problem for GF with transitive relations is undecidable!
Guarded Fragment with Semantically Constrained Guards

• Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: ≈ + expon., composition, conj. of TG

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 3 / 9

Standard Translation From Modal Logics to First-Order Logic
• Recall our translation from modal logic to the guarded fragment.

⟨R⟩
(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

• What about other classical modal logics from the modal cube?
Not in GF! It cannot express transitivity/equivalence/Euclidean/etc.

Even worse: the satisfiability problem for GF with transitive relations is undecidable!

Guarded Fragment with Semantically Constrained Guards
• Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.

Dec. cases: transitive, equivalence (closure) guards Undec. cases: ≈ + expon., composition, conj. of TG

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 3 / 9

Standard Translation From Modal Logics to First-Order Logic
• Recall our translation from modal logic to the guarded fragment.

⟨R⟩
(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

• What about other classical modal logics from the modal cube?
Not in GF! It cannot express transitivity/equivalence/Euclidean/etc.

Even worse: the satisfiability problem for GF with transitive relations is undecidable!
Guarded Fragment with Semantically Constrained Guards

• Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: ≈ + expon., composition, conj. of TG

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 3 / 9

Standard Translation From Modal Logics to First-Order Logic
• Recall our translation from modal logic to the guarded fragment.

⟨R⟩
(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

• What about other classical modal logics from the modal cube?
Not in GF! It cannot express transitivity/equivalence/Euclidean/etc.

Even worse: the satisfiability problem for GF with transitive relations is undecidable!
Guarded Fragment with Semantically Constrained Guards

• Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.

Dec. cases: transitive, equivalence (closure) guards Undec. cases: ≈ + expon., composition, conj. of TG

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 3 / 9

Standard Translation From Modal Logics to First-Order Logic
• Recall our translation from modal logic to the guarded fragment.

⟨R⟩
(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

• What about other classical modal logics from the modal cube?
Not in GF! It cannot express transitivity/equivalence/Euclidean/etc.

Even worse: the satisfiability problem for GF with transitive relations is undecidable!
Guarded Fragment with Semantically Constrained Guards

• Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards

Undec. cases: ≈ + expon., composition, conj. of TG

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 3 / 9

Standard Translation From Modal Logics to First-Order Logic
• Recall our translation from modal logic to the guarded fragment.

⟨R⟩
(
(p ∧ ¬q) ∨

[
S̄
]
r
)
⇝ φ(x) := ∃y

(
R(x , y) ∧

[
(p(y) ∧ ¬q(y)) ∨ ∀z

(
S(z , y) → r(z)

)])

• What about other classical modal logics from the modal cube?
Not in GF! It cannot express transitivity/equivalence/Euclidean/etc.

Even worse: the satisfiability problem for GF with transitive relations is undecidable!
Guarded Fragment with Semantically Constrained Guards

• Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: ≈ + expon., composition, conj. of TG

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 3 / 9

• Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.

Dec. cases: transitive, equivalence (closure) guards Undec. cases: ≈ + expon., composition, conj. of TG

Our Motivation
• Goal: Provide an extension of GF that captures dynamic logic (ICPDL).

ICPDL = ML + ⟨π ∩ . . . ∩ π′⟩.φ
π - two-way regular expressions

E.g. (A, 1) |= ⟨(T ◦ T̄) ∩ R∗⟩q

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q

Motivation I: Allowing for expressive navigation features á la RPQs to model graph database scenarios.
Motivation II: Improve state of the art. Limitation: undecidability of the logics with ≈.
Motivation III: Some positive results are only for the two-variable fragments.
Motivation IV: Provide a more high-level proof capturing many variants of GF in a uniform way.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4 / 9

• Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards

Undec. cases: ≈ + expon., composition, conj. of TG

Our Motivation
• Goal: Provide an extension of GF that captures dynamic logic (ICPDL).

ICPDL = ML + ⟨π ∩ . . . ∩ π′⟩.φ
π - two-way regular expressions

E.g. (A, 1) |= ⟨(T ◦ T̄) ∩ R∗⟩q

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q

Motivation I: Allowing for expressive navigation features á la RPQs to model graph database scenarios.
Motivation II: Improve state of the art. Limitation: undecidability of the logics with ≈.
Motivation III: Some positive results are only for the two-variable fragments.
Motivation IV: Provide a more high-level proof capturing many variants of GF in a uniform way.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4 / 9

• Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: ≈ + expon., composition, conj. of TG

Our Motivation
• Goal: Provide an extension of GF that captures dynamic logic (ICPDL).

ICPDL = ML + ⟨π ∩ . . . ∩ π′⟩.φ
π - two-way regular expressions

E.g. (A, 1) |= ⟨(T ◦ T̄) ∩ R∗⟩q

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q

Motivation I: Allowing for expressive navigation features á la RPQs to model graph database scenarios.
Motivation II: Improve state of the art. Limitation: undecidability of the logics with ≈.
Motivation III: Some positive results are only for the two-variable fragments.
Motivation IV: Provide a more high-level proof capturing many variants of GF in a uniform way.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4 / 9

• Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: ≈ + expon., composition, conj. of TG

Our Motivation
• Goal: Provide an extension of GF that captures dynamic logic (ICPDL).

ICPDL = ML + ⟨π ∩ . . . ∩ π′⟩.φ
π - two-way regular expressions

E.g. (A, 1) |= ⟨(T ◦ T̄) ∩ R∗⟩q

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q

Motivation I: Allowing for expressive navigation features á la RPQs to model graph database scenarios.
Motivation II: Improve state of the art. Limitation: undecidability of the logics with ≈.
Motivation III: Some positive results are only for the two-variable fragments.
Motivation IV: Provide a more high-level proof capturing many variants of GF in a uniform way.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4 / 9

• Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: ≈ + expon., composition, conj. of TG

Our Motivation

• Goal: Provide an extension of GF that captures dynamic logic (ICPDL).

ICPDL = ML + ⟨π ∩ . . . ∩ π′⟩.φ
π - two-way regular expressions

E.g. (A, 1) |= ⟨(T ◦ T̄) ∩ R∗⟩q

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q

Motivation I: Allowing for expressive navigation features á la RPQs to model graph database scenarios.
Motivation II: Improve state of the art. Limitation: undecidability of the logics with ≈.
Motivation III: Some positive results are only for the two-variable fragments.
Motivation IV: Provide a more high-level proof capturing many variants of GF in a uniform way.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4 / 9

• Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: ≈ + expon., composition, conj. of TG

Our Motivation
• Goal: Provide an extension of GF that captures dynamic logic (ICPDL).

ICPDL = ML + ⟨π ∩ . . . ∩ π′⟩.φ
π - two-way regular expressions

E.g. (A, 1) |= ⟨(T ◦ T̄) ∩ R∗⟩q

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q

Motivation I: Allowing for expressive navigation features á la RPQs to model graph database scenarios.
Motivation II: Improve state of the art. Limitation: undecidability of the logics with ≈.
Motivation III: Some positive results are only for the two-variable fragments.
Motivation IV: Provide a more high-level proof capturing many variants of GF in a uniform way.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4 / 9

• Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: ≈ + expon., composition, conj. of TG

Our Motivation
• Goal: Provide an extension of GF that captures dynamic logic (ICPDL).

ICPDL = ML + ⟨π ∩ . . . ∩ π′⟩.φ
π - two-way regular expressions

E.g. (A, 1) |= ⟨(T ◦ T̄) ∩ R∗⟩q

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q

Motivation I: Allowing for expressive navigation features á la RPQs to model graph database scenarios.
Motivation II: Improve state of the art. Limitation: undecidability of the logics with ≈.
Motivation III: Some positive results are only for the two-variable fragments.
Motivation IV: Provide a more high-level proof capturing many variants of GF in a uniform way.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4 / 9

• Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: ≈ + expon., composition, conj. of TG

Our Motivation
• Goal: Provide an extension of GF that captures dynamic logic (ICPDL).

ICPDL = ML + ⟨π ∩ . . . ∩ π′⟩.φ
π - two-way regular expressions

E.g. (A, 1) |= ⟨(T ◦ T̄) ∩ R∗⟩q

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q

Motivation I: Allowing for expressive navigation features á la RPQs to model graph database scenarios.

Motivation II: Improve state of the art. Limitation: undecidability of the logics with ≈.
Motivation III: Some positive results are only for the two-variable fragments.
Motivation IV: Provide a more high-level proof capturing many variants of GF in a uniform way.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4 / 9

• Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: ≈ + expon., composition, conj. of TG

Our Motivation
• Goal: Provide an extension of GF that captures dynamic logic (ICPDL).

ICPDL = ML + ⟨π ∩ . . . ∩ π′⟩.φ
π - two-way regular expressions

E.g. (A, 1) |= ⟨(T ◦ T̄) ∩ R∗⟩q

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q

Motivation I: Allowing for expressive navigation features á la RPQs to model graph database scenarios.
Motivation II: Improve state of the art. Limitation: undecidability of the logics with ≈.

Motivation III: Some positive results are only for the two-variable fragments.
Motivation IV: Provide a more high-level proof capturing many variants of GF in a uniform way.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4 / 9

• Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: ≈ + expon., composition, conj. of TG

Our Motivation
• Goal: Provide an extension of GF that captures dynamic logic (ICPDL).

ICPDL = ML + ⟨π ∩ . . . ∩ π′⟩.φ
π - two-way regular expressions

E.g. (A, 1) |= ⟨(T ◦ T̄) ∩ R∗⟩q

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q

Motivation I: Allowing for expressive navigation features á la RPQs to model graph database scenarios.
Motivation II: Improve state of the art. Limitation: undecidability of the logics with ≈.
Motivation III: Some positive results are only for the two-variable fragments.

Motivation IV: Provide a more high-level proof capturing many variants of GF in a uniform way.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4 / 9

• Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: ≈ + expon., composition, conj. of TG

Our Motivation
• Goal: Provide an extension of GF that captures dynamic logic (ICPDL).

ICPDL = ML + ⟨π ∩ . . . ∩ π′⟩.φ
π - two-way regular expressions

E.g. (A, 1) |= ⟨(T ◦ T̄) ∩ R∗⟩q

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q

Motivation I: Allowing for expressive navigation features á la RPQs to model graph database scenarios.
Motivation II: Improve state of the art. Limitation: undecidability of the logics with ≈.
Motivation III: Some positive results are only for the two-variable fragments.
Motivation IV: Provide a more high-level proof capturing many variants of GF in a uniform way.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4 / 9

Guarded Fragment with Regular Guards (RGF)

Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

• Example 1: ⟨(T ◦ T̄) ∩ R∗⟩q translates to ∃y
(
(T ◦ T̄) ∩ R∗

)
(xy) ∧ q(y)

• Example 2: All R-reachable elements are B-connected: ∀xy R∗(xy) → B(xy) [not in µGF]
• Captures transitivity of via R+, equivalence relations via (R + R̄)∗, composition and more.
• Built-in support for regular path queries.
• Due to the presence of ∩ we generalize GF with conjunction of transitive guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5 / 9

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies σFO and σreg.

RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

• Example 1: ⟨(T ◦ T̄) ∩ R∗⟩q translates to ∃y
(
(T ◦ T̄) ∩ R∗

)
(xy) ∧ q(y)

• Example 2: All R-reachable elements are B-connected: ∀xy R∗(xy) → B(xy) [not in µGF]
• Captures transitivity of via R+, equivalence relations via (R + R̄)∗, composition and more.
• Built-in support for regular path queries.
• Due to the presence of ∩ we generalize GF with conjunction of transitive guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5 / 9

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by

allowing ICPDL programs π(xy) over σreg as binary guards.

• Example 1: ⟨(T ◦ T̄) ∩ R∗⟩q translates to ∃y
(
(T ◦ T̄) ∩ R∗

)
(xy) ∧ q(y)

• Example 2: All R-reachable elements are B-connected: ∀xy R∗(xy) → B(xy) [not in µGF]
• Captures transitivity of via R+, equivalence relations via (R + R̄)∗, composition and more.
• Built-in support for regular path queries.
• Due to the presence of ∩ we generalize GF with conjunction of transitive guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5 / 9

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

• Example 1: ⟨(T ◦ T̄) ∩ R∗⟩q translates to ∃y
(
(T ◦ T̄) ∩ R∗

)
(xy) ∧ q(y)

• Example 2: All R-reachable elements are B-connected: ∀xy R∗(xy) → B(xy) [not in µGF]
• Captures transitivity of via R+, equivalence relations via (R + R̄)∗, composition and more.
• Built-in support for regular path queries.
• Due to the presence of ∩ we generalize GF with conjunction of transitive guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5 / 9

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

• Example 1:

⟨(T ◦ T̄) ∩ R∗⟩q translates to ∃y
(
(T ◦ T̄) ∩ R∗

)
(xy) ∧ q(y)

• Example 2: All R-reachable elements are B-connected: ∀xy R∗(xy) → B(xy) [not in µGF]
• Captures transitivity of via R+, equivalence relations via (R + R̄)∗, composition and more.
• Built-in support for regular path queries.
• Due to the presence of ∩ we generalize GF with conjunction of transitive guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5 / 9

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

• Example 1: ⟨(T ◦ T̄) ∩ R∗⟩q

translates to ∃y
(
(T ◦ T̄) ∩ R∗

)
(xy) ∧ q(y)

• Example 2: All R-reachable elements are B-connected: ∀xy R∗(xy) → B(xy) [not in µGF]
• Captures transitivity of via R+, equivalence relations via (R + R̄)∗, composition and more.
• Built-in support for regular path queries.
• Due to the presence of ∩ we generalize GF with conjunction of transitive guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5 / 9

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

• Example 1: ⟨(T ◦ T̄) ∩ R∗⟩q translates to

∃y
(
(T ◦ T̄) ∩ R∗

)
(xy) ∧ q(y)

• Example 2: All R-reachable elements are B-connected: ∀xy R∗(xy) → B(xy) [not in µGF]
• Captures transitivity of via R+, equivalence relations via (R + R̄)∗, composition and more.
• Built-in support for regular path queries.
• Due to the presence of ∩ we generalize GF with conjunction of transitive guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5 / 9

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

• Example 1: ⟨(T ◦ T̄) ∩ R∗⟩q translates to ∃y
(
(T ◦ T̄) ∩ R∗

)
(xy) ∧ q(y)

• Example 2: All R-reachable elements are B-connected: ∀xy R∗(xy) → B(xy) [not in µGF]
• Captures transitivity of via R+, equivalence relations via (R + R̄)∗, composition and more.
• Built-in support for regular path queries.
• Due to the presence of ∩ we generalize GF with conjunction of transitive guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5 / 9

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

• Example 1: ⟨(T ◦ T̄) ∩ R∗⟩q translates to ∃y
(
(T ◦ T̄) ∩ R∗

)
(xy) ∧ q(y)

• Example 2: All R-reachable elements are B-connected:

∀xy R∗(xy) → B(xy) [not in µGF]
• Captures transitivity of via R+, equivalence relations via (R + R̄)∗, composition and more.
• Built-in support for regular path queries.
• Due to the presence of ∩ we generalize GF with conjunction of transitive guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5 / 9

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

• Example 1: ⟨(T ◦ T̄) ∩ R∗⟩q translates to ∃y
(
(T ◦ T̄) ∩ R∗

)
(xy) ∧ q(y)

• Example 2: All R-reachable elements are B-connected: ∀xy R∗(xy) → B(xy)

[not in µGF]
• Captures transitivity of via R+, equivalence relations via (R + R̄)∗, composition and more.
• Built-in support for regular path queries.
• Due to the presence of ∩ we generalize GF with conjunction of transitive guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5 / 9

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

• Example 1: ⟨(T ◦ T̄) ∩ R∗⟩q translates to ∃y
(
(T ◦ T̄) ∩ R∗

)
(xy) ∧ q(y)

• Example 2: All R-reachable elements are B-connected: ∀xy R∗(xy) → B(xy) [not in µGF]

• Captures transitivity of via R+, equivalence relations via (R + R̄)∗, composition and more.
• Built-in support for regular path queries.
• Due to the presence of ∩ we generalize GF with conjunction of transitive guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5 / 9

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

• Example 1: ⟨(T ◦ T̄) ∩ R∗⟩q translates to ∃y
(
(T ◦ T̄) ∩ R∗

)
(xy) ∧ q(y)

• Example 2: All R-reachable elements are B-connected: ∀xy R∗(xy) → B(xy) [not in µGF]
• Captures transitivity of via R+,

equivalence relations via (R + R̄)∗, composition and more.
• Built-in support for regular path queries.
• Due to the presence of ∩ we generalize GF with conjunction of transitive guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5 / 9

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

• Example 1: ⟨(T ◦ T̄) ∩ R∗⟩q translates to ∃y
(
(T ◦ T̄) ∩ R∗

)
(xy) ∧ q(y)

• Example 2: All R-reachable elements are B-connected: ∀xy R∗(xy) → B(xy) [not in µGF]
• Captures transitivity of via R+, equivalence relations via (R + R̄)∗,

composition and more.
• Built-in support for regular path queries.
• Due to the presence of ∩ we generalize GF with conjunction of transitive guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5 / 9

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

• Example 1: ⟨(T ◦ T̄) ∩ R∗⟩q translates to ∃y
(
(T ◦ T̄) ∩ R∗

)
(xy) ∧ q(y)

• Example 2: All R-reachable elements are B-connected: ∀xy R∗(xy) → B(xy) [not in µGF]
• Captures transitivity of via R+, equivalence relations via (R + R̄)∗, composition and more.

• Built-in support for regular path queries.
• Due to the presence of ∩ we generalize GF with conjunction of transitive guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5 / 9

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

• Example 1: ⟨(T ◦ T̄) ∩ R∗⟩q translates to ∃y
(
(T ◦ T̄) ∩ R∗

)
(xy) ∧ q(y)

• Example 2: All R-reachable elements are B-connected: ∀xy R∗(xy) → B(xy) [not in µGF]
• Captures transitivity of via R+, equivalence relations via (R + R̄)∗, composition and more.
• Built-in support for regular path queries.

• Due to the presence of ∩ we generalize GF with conjunction of transitive guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5 / 9

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

• Example 1: ⟨(T ◦ T̄) ∩ R∗⟩q translates to ∃y
(
(T ◦ T̄) ∩ R∗

)
(xy) ∧ q(y)

• Example 2: All R-reachable elements are B-connected: ∀xy R∗(xy) → B(xy) [not in µGF]
• Captures transitivity of via R+, equivalence relations via (R + R̄)∗, composition and more.
• Built-in support for regular path queries.
• Due to the presence of ∩ we generalize GF with conjunction of transitive guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5 / 9

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

• Example 1: ⟨(T ◦ T̄) ∩ R∗⟩q translates to ∃y
(
(T ◦ T̄) ∩ R∗

)
(xy) ∧ q(y)

• Example 2: All R-reachable elements are B-connected: ∀xy R∗(xy) → B(xy) [not in µGF]
• Captures transitivity of via R+, equivalence relations via (R + R̄)∗, composition and more.
• Built-in support for regular path queries.
• Due to the presence of ∩ we generalize GF with conjunction of transitive guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5 / 9

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

• Example 1: ⟨(T ◦ T̄) ∩ R∗⟩q translates to ∃y
(
(T ◦ T̄) ∩ R∗

)
(xy) ∧ q(y)

• Example 2: All R-reachable elements are B-connected: ∀xy R∗(xy) → B(xy) [not in µGF]
• Captures transitivity of via R+, equivalence relations via (R + R̄)∗, composition and more.
• Built-in support for regular path queries.
• Due to the presence of ∩ we generalize GF with conjunction of transitive guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea:

solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5 / 9

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

• Example 1: ⟨(T ◦ T̄) ∩ R∗⟩q translates to ∃y
(
(T ◦ T̄) ∩ R∗

)
(xy) ∧ q(y)

• Example 2: All R-reachable elements are B-connected: ∀xy R∗(xy) → B(xy) [not in µGF]
• Captures transitivity of via R+, equivalence relations via (R + R̄)∗, composition and more.
• Built-in support for regular path queries.
• Due to the presence of ∩ we generalize GF with conjunction of transitive guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and

lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5 / 9

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

• Example 1: ⟨(T ◦ T̄) ∩ R∗⟩q translates to ∃y
(
(T ◦ T̄) ∩ R∗

)
(xy) ∧ q(y)

• Example 2: All R-reachable elements are B-connected: ∀xy R∗(xy) → B(xy) [not in µGF]
• Captures transitivity of via R+, equivalence relations via (R + R̄)∗, composition and more.
• Built-in support for regular path queries.
• Due to the presence of ∩ we generalize GF with conjunction of transitive guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5 / 9

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

• Example 1: ⟨(T ◦ T̄) ∩ R∗⟩q translates to ∃y
(
(T ◦ T̄) ∩ R∗

)
(xy) ∧ q(y)

• Example 2: All R-reachable elements are B-connected: ∀xy R∗(xy) → B(xy) [not in µGF]
• Captures transitivity of via R+, equivalence relations via (R + R̄)∗, composition and more.
• Built-in support for regular path queries.
• Due to the presence of ∩ we generalize GF with conjunction of transitive guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5 / 9

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

• Example 1: ⟨(T ◦ T̄) ∩ R∗⟩q translates to ∃y
(
(T ◦ T̄) ∩ R∗

)
(xy) ∧ q(y)

• Example 2: All R-reachable elements are B-connected: ∀xy R∗(xy) → B(xy) [not in µGF]
• Captures transitivity of via R+, equivalence relations via (R + R̄)∗, composition and more.
• Built-in support for regular path queries.
• Due to the presence of ∩ we generalize GF with conjunction of transitive guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.
Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5 / 9

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

• Example 1: ⟨(T ◦ T̄) ∩ R∗⟩q translates to ∃y
(
(T ◦ T̄) ∩ R∗

)
(xy) ∧ q(y)

• Example 2: All R-reachable elements are B-connected: ∀xy R∗(xy) → B(xy) [not in µGF]
• Captures transitivity of via R+, equivalence relations via (R + R̄)∗, composition and more.
• Built-in support for regular path queries.
• Due to the presence of ∩ we generalize GF with conjunction of transitive guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.
Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5 / 9

Technical Toolkit (for the two-variable case)

We say that φ ∈ RGF2 is in Scott’s normal form if it is a conjunction of:
• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

Atomic One-Types and Two-Types
• 1-type over σ = maximal satisfiable conjunction of σ-literals involving x1. (ασ)
• 2-type over σ = maximal satisfiable conjunction of σ-literals involving x1, x2. (βσ)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.
Note: Given φ we have |αφ| ∈ O(2|φ|) but |βφ| ∈ O(22|φ|) [reason: arbitrary arity symbols!].
Usually we rephrase satisfiaction of φ in terms of realizable types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6 / 9

Technical Toolkit (for the two-variable case)
We say that φ ∈ RGF2 is in Scott’s normal form if it is a conjunction of:

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

Atomic One-Types and Two-Types
• 1-type over σ = maximal satisfiable conjunction of σ-literals involving x1. (ασ)
• 2-type over σ = maximal satisfiable conjunction of σ-literals involving x1, x2. (βσ)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.
Note: Given φ we have |αφ| ∈ O(2|φ|) but |βφ| ∈ O(22|φ|) [reason: arbitrary arity symbols!].
Usually we rephrase satisfiaction of φ in terms of realizable types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6 / 9

Technical Toolkit (for the two-variable case)
We say that φ ∈ RGF2 is in Scott’s normal form if it is a conjunction of:

• ∀x1λ(x1)

[the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

Atomic One-Types and Two-Types
• 1-type over σ = maximal satisfiable conjunction of σ-literals involving x1. (ασ)
• 2-type over σ = maximal satisfiable conjunction of σ-literals involving x1, x2. (βσ)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.
Note: Given φ we have |αφ| ∈ O(2|φ|) but |βφ| ∈ O(22|φ|) [reason: arbitrary arity symbols!].
Usually we rephrase satisfiaction of φ in terms of realizable types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6 / 9

Technical Toolkit (for the two-variable case)
We say that φ ∈ RGF2 is in Scott’s normal form if it is a conjunction of:

• ∀x1λ(x1) [the general universal conjunct]

• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

Atomic One-Types and Two-Types
• 1-type over σ = maximal satisfiable conjunction of σ-literals involving x1. (ασ)
• 2-type over σ = maximal satisfiable conjunction of σ-literals involving x1, x2. (βσ)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.
Note: Given φ we have |αφ| ∈ O(2|φ|) but |βφ| ∈ O(22|φ|) [reason: arbitrary arity symbols!].
Usually we rephrase satisfiaction of φ in terms of realizable types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6 / 9

Technical Toolkit (for the two-variable case)
We say that φ ∈ RGF2 is in Scott’s normal form if it is a conjunction of:

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2)

[∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

Atomic One-Types and Two-Types
• 1-type over σ = maximal satisfiable conjunction of σ-literals involving x1. (ασ)
• 2-type over σ = maximal satisfiable conjunction of σ-literals involving x1, x2. (βσ)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.
Note: Given φ we have |αφ| ∈ O(2|φ|) but |βφ| ∈ O(22|φ|) [reason: arbitrary arity symbols!].
Usually we rephrase satisfiaction of φ in terms of realizable types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6 / 9

Technical Toolkit (for the two-variable case)
We say that φ ∈ RGF2 is in Scott’s normal form if it is a conjunction of:

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]

• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

Atomic One-Types and Two-Types
• 1-type over σ = maximal satisfiable conjunction of σ-literals involving x1. (ασ)
• 2-type over σ = maximal satisfiable conjunction of σ-literals involving x1, x2. (βσ)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.
Note: Given φ we have |αφ| ∈ O(2|φ|) but |βφ| ∈ O(22|φ|) [reason: arbitrary arity symbols!].
Usually we rephrase satisfiaction of φ in terms of realizable types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6 / 9

Technical Toolkit (for the two-variable case)
We say that φ ∈ RGF2 is in Scott’s normal form if it is a conjunction of:

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2)

[∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

Atomic One-Types and Two-Types
• 1-type over σ = maximal satisfiable conjunction of σ-literals involving x1. (ασ)
• 2-type over σ = maximal satisfiable conjunction of σ-literals involving x1, x2. (βσ)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.
Note: Given φ we have |αφ| ∈ O(2|φ|) but |βφ| ∈ O(22|φ|) [reason: arbitrary arity symbols!].
Usually we rephrase satisfiaction of φ in terms of realizable types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6 / 9

Technical Toolkit (for the two-variable case)
We say that φ ∈ RGF2 is in Scott’s normal form if it is a conjunction of:

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]

• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

Atomic One-Types and Two-Types
• 1-type over σ = maximal satisfiable conjunction of σ-literals involving x1. (ασ)
• 2-type over σ = maximal satisfiable conjunction of σ-literals involving x1, x2. (βσ)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.
Note: Given φ we have |αφ| ∈ O(2|φ|) but |βφ| ∈ O(22|φ|) [reason: arbitrary arity symbols!].
Usually we rephrase satisfiaction of φ in terms of realizable types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6 / 9

Technical Toolkit (for the two-variable case)
We say that φ ∈ RGF2 is in Scott’s normal form if it is a conjunction of:

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2)

[∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

Atomic One-Types and Two-Types
• 1-type over σ = maximal satisfiable conjunction of σ-literals involving x1. (ασ)
• 2-type over σ = maximal satisfiable conjunction of σ-literals involving x1, x2. (βσ)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.
Note: Given φ we have |αφ| ∈ O(2|φ|) but |βφ| ∈ O(22|φ|) [reason: arbitrary arity symbols!].
Usually we rephrase satisfiaction of φ in terms of realizable types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6 / 9

Technical Toolkit (for the two-variable case)
We say that φ ∈ RGF2 is in Scott’s normal form if it is a conjunction of:

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]

• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]
where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

Atomic One-Types and Two-Types
• 1-type over σ = maximal satisfiable conjunction of σ-literals involving x1. (ασ)
• 2-type over σ = maximal satisfiable conjunction of σ-literals involving x1, x2. (βσ)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.
Note: Given φ we have |αφ| ∈ O(2|φ|) but |βφ| ∈ O(22|φ|) [reason: arbitrary arity symbols!].
Usually we rephrase satisfiaction of φ in terms of realizable types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6 / 9

Technical Toolkit (for the two-variable case)
We say that φ ∈ RGF2 is in Scott’s normal form if it is a conjunction of:

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2),

[∀reg-conjuncts]
where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

Atomic One-Types and Two-Types
• 1-type over σ = maximal satisfiable conjunction of σ-literals involving x1. (ασ)
• 2-type over σ = maximal satisfiable conjunction of σ-literals involving x1, x2. (βσ)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.
Note: Given φ we have |αφ| ∈ O(2|φ|) but |βφ| ∈ O(22|φ|) [reason: arbitrary arity symbols!].
Usually we rephrase satisfiaction of φ in terms of realizable types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6 / 9

Technical Toolkit (for the two-variable case)
We say that φ ∈ RGF2 is in Scott’s normal form if it is a conjunction of:

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

Atomic One-Types and Two-Types
• 1-type over σ = maximal satisfiable conjunction of σ-literals involving x1. (ασ)
• 2-type over σ = maximal satisfiable conjunction of σ-literals involving x1, x2. (βσ)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.
Note: Given φ we have |αφ| ∈ O(2|φ|) but |βφ| ∈ O(22|φ|) [reason: arbitrary arity symbols!].
Usually we rephrase satisfiaction of φ in terms of realizable types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6 / 9

Technical Toolkit (for the two-variable case)
We say that φ ∈ RGF2 is in Scott’s normal form if it is a conjunction of:

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩,

and all other formulae are quantifier-free and over σFO.

Atomic One-Types and Two-Types
• 1-type over σ = maximal satisfiable conjunction of σ-literals involving x1. (ασ)
• 2-type over σ = maximal satisfiable conjunction of σ-literals involving x1, x2. (βσ)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.
Note: Given φ we have |αφ| ∈ O(2|φ|) but |βφ| ∈ O(22|φ|) [reason: arbitrary arity symbols!].
Usually we rephrase satisfiaction of φ in terms of realizable types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6 / 9

Technical Toolkit (for the two-variable case)
We say that φ ∈ RGF2 is in Scott’s normal form if it is a conjunction of:

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

Atomic One-Types and Two-Types
• 1-type over σ = maximal satisfiable conjunction of σ-literals involving x1. (ασ)
• 2-type over σ = maximal satisfiable conjunction of σ-literals involving x1, x2. (βσ)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.
Note: Given φ we have |αφ| ∈ O(2|φ|) but |βφ| ∈ O(22|φ|) [reason: arbitrary arity symbols!].
Usually we rephrase satisfiaction of φ in terms of realizable types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6 / 9

Technical Toolkit (for the two-variable case)
We say that φ ∈ RGF2 is in Scott’s normal form if it is a conjunction of:

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

Atomic One-Types and Two-Types
• 1-type over σ = maximal satisfiable conjunction of σ-literals involving x1. (ασ)
• 2-type over σ = maximal satisfiable conjunction of σ-literals involving x1, x2. (βσ)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.
Note: Given φ we have |αφ| ∈ O(2|φ|) but |βφ| ∈ O(22|φ|) [reason: arbitrary arity symbols!].
Usually we rephrase satisfiaction of φ in terms of realizable types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6 / 9

Technical Toolkit (for the two-variable case)
We say that φ ∈ RGF2 is in Scott’s normal form if it is a conjunction of:

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

Atomic One-Types and Two-Types

• 1-type over σ = maximal satisfiable conjunction of σ-literals involving x1. (ασ)
• 2-type over σ = maximal satisfiable conjunction of σ-literals involving x1, x2. (βσ)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.
Note: Given φ we have |αφ| ∈ O(2|φ|) but |βφ| ∈ O(22|φ|) [reason: arbitrary arity symbols!].
Usually we rephrase satisfiaction of φ in terms of realizable types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6 / 9

Technical Toolkit (for the two-variable case)
We say that φ ∈ RGF2 is in Scott’s normal form if it is a conjunction of:

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

Atomic One-Types and Two-Types
• 1-type over σ = maximal satisfiable conjunction of σ-literals involving x1. (ασ)

• 2-type over σ = maximal satisfiable conjunction of σ-literals involving x1, x2. (βσ)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.
Note: Given φ we have |αφ| ∈ O(2|φ|) but |βφ| ∈ O(22|φ|) [reason: arbitrary arity symbols!].
Usually we rephrase satisfiaction of φ in terms of realizable types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6 / 9

Technical Toolkit (for the two-variable case)
We say that φ ∈ RGF2 is in Scott’s normal form if it is a conjunction of:

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

Atomic One-Types and Two-Types
• 1-type over σ = maximal satisfiable conjunction of σ-literals involving x1. (ασ)
• 2-type over σ = maximal satisfiable conjunction of σ-literals involving x1, x2. (βσ)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.
Note: Given φ we have |αφ| ∈ O(2|φ|) but |βφ| ∈ O(22|φ|) [reason: arbitrary arity symbols!].
Usually we rephrase satisfiaction of φ in terms of realizable types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6 / 9

Technical Toolkit (for the two-variable case)
We say that φ ∈ RGF2 is in Scott’s normal form if it is a conjunction of:

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

Atomic One-Types and Two-Types
• 1-type over σ = maximal satisfiable conjunction of σ-literals involving x1. (ασ)
• 2-type over σ = maximal satisfiable conjunction of σ-literals involving x1, x2. (βσ)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.

Note: Given φ we have |αφ| ∈ O(2|φ|) but |βφ| ∈ O(22|φ|) [reason: arbitrary arity symbols!].
Usually we rephrase satisfiaction of φ in terms of realizable types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6 / 9

Technical Toolkit (for the two-variable case)
We say that φ ∈ RGF2 is in Scott’s normal form if it is a conjunction of:

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

Atomic One-Types and Two-Types
• 1-type over σ = maximal satisfiable conjunction of σ-literals involving x1. (ασ)
• 2-type over σ = maximal satisfiable conjunction of σ-literals involving x1, x2. (βσ)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.
Note: Given φ we have |αφ| ∈ O(2|φ|) but |βφ| ∈ O(22|φ|) [reason: arbitrary arity symbols!].

Usually we rephrase satisfiaction of φ in terms of realizable types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6 / 9

Technical Toolkit (for the two-variable case)
We say that φ ∈ RGF2 is in Scott’s normal form if it is a conjunction of:

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

Atomic One-Types and Two-Types
• 1-type over σ = maximal satisfiable conjunction of σ-literals involving x1. (ασ)
• 2-type over σ = maximal satisfiable conjunction of σ-literals involving x1, x2. (βσ)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.
Note: Given φ we have |αφ| ∈ O(2|φ|) but |βφ| ∈ O(22|φ|) [reason: arbitrary arity symbols!].
Usually we rephrase satisfiaction of φ in terms of realizable types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6 / 9

• ∀x1λ(x1)

[the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

From RGF2 to ICPDL.
Take φ. If satisfiable, φ has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary Uα per each 1-type α from αφ.
2. Fresh binary Bβ per each 2-type β from βφ restricted to σFO + all binary predicates in σreg from φ.

Translation almost easy, e.g. ∀x1 γ(x1) → ∃x2 π(x1x2) ∧ ϕ(x1x2) 7→

[⋆]
(∨

α|=γ Uα → ⟨π ∩ ⋃
β|=ϕ Bβ⟩.⊤

)

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q Atr :=
1

2

3

4

5

R,Bβ1

Bβ2

R,Bβ2

R,Bβ3

T

T

Uα1Uα2

Uα3

?

? ?

Main challenge: ensure the assignment of missing 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7 / 9

• ∀x1λ(x1) [the general universal conjunct]

• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

From RGF2 to ICPDL.
Take φ. If satisfiable, φ has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary Uα per each 1-type α from αφ.
2. Fresh binary Bβ per each 2-type β from βφ restricted to σFO + all binary predicates in σreg from φ.

Translation almost easy, e.g. ∀x1 γ(x1) → ∃x2 π(x1x2) ∧ ϕ(x1x2) 7→

[⋆]
(∨

α|=γ Uα → ⟨π ∩ ⋃
β|=ϕ Bβ⟩.⊤

)

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q Atr :=
1

2

3

4

5

R,Bβ1

Bβ2

R,Bβ2

R,Bβ3

T

T

Uα1Uα2

Uα3

?

? ?

Main challenge: ensure the assignment of missing 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7 / 9

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2)

[∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

From RGF2 to ICPDL.
Take φ. If satisfiable, φ has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary Uα per each 1-type α from αφ.
2. Fresh binary Bβ per each 2-type β from βφ restricted to σFO + all binary predicates in σreg from φ.

Translation almost easy, e.g. ∀x1 γ(x1) → ∃x2 π(x1x2) ∧ ϕ(x1x2) 7→

[⋆]
(∨

α|=γ Uα → ⟨π ∩ ⋃
β|=ϕ Bβ⟩.⊤

)

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q Atr :=
1

2

3

4

5

R,Bβ1

Bβ2

R,Bβ2

R,Bβ3

T

T

Uα1Uα2

Uα3

?

? ?

Main challenge: ensure the assignment of missing 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7 / 9

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]

• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

From RGF2 to ICPDL.
Take φ. If satisfiable, φ has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary Uα per each 1-type α from αφ.
2. Fresh binary Bβ per each 2-type β from βφ restricted to σFO + all binary predicates in σreg from φ.

Translation almost easy, e.g. ∀x1 γ(x1) → ∃x2 π(x1x2) ∧ ϕ(x1x2) 7→

[⋆]
(∨

α|=γ Uα → ⟨π ∩ ⋃
β|=ϕ Bβ⟩.⊤

)

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q Atr :=
1

2

3

4

5

R,Bβ1

Bβ2

R,Bβ2

R,Bβ3

T

T

Uα1Uα2

Uα3

?

? ?

Main challenge: ensure the assignment of missing 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7 / 9

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2)

[∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

From RGF2 to ICPDL.
Take φ. If satisfiable, φ has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary Uα per each 1-type α from αφ.
2. Fresh binary Bβ per each 2-type β from βφ restricted to σFO + all binary predicates in σreg from φ.

Translation almost easy, e.g. ∀x1 γ(x1) → ∃x2 π(x1x2) ∧ ϕ(x1x2) 7→

[⋆]
(∨

α|=γ Uα → ⟨π ∩ ⋃
β|=ϕ Bβ⟩.⊤

)

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q Atr :=
1

2

3

4

5

R,Bβ1

Bβ2

R,Bβ2

R,Bβ3

T

T

Uα1Uα2

Uα3

?

? ?

Main challenge: ensure the assignment of missing 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7 / 9

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]

• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

From RGF2 to ICPDL.
Take φ. If satisfiable, φ has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary Uα per each 1-type α from αφ.
2. Fresh binary Bβ per each 2-type β from βφ restricted to σFO + all binary predicates in σreg from φ.

Translation almost easy, e.g. ∀x1 γ(x1) → ∃x2 π(x1x2) ∧ ϕ(x1x2) 7→

[⋆]
(∨

α|=γ Uα → ⟨π ∩ ⋃
β|=ϕ Bβ⟩.⊤

)

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q Atr :=
1

2

3

4

5

R,Bβ1

Bβ2

R,Bβ2

R,Bβ3

T

T

Uα1Uα2

Uα3

?

? ?

Main challenge: ensure the assignment of missing 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7 / 9

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2)

[∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

From RGF2 to ICPDL.
Take φ. If satisfiable, φ has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary Uα per each 1-type α from αφ.
2. Fresh binary Bβ per each 2-type β from βφ restricted to σFO + all binary predicates in σreg from φ.

Translation almost easy, e.g. ∀x1 γ(x1) → ∃x2 π(x1x2) ∧ ϕ(x1x2) 7→

[⋆]
(∨

α|=γ Uα → ⟨π ∩ ⋃
β|=ϕ Bβ⟩.⊤

)

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q Atr :=
1

2

3

4

5

R,Bβ1

Bβ2

R,Bβ2

R,Bβ3

T

T

Uα1Uα2

Uα3

?

? ?

Main challenge: ensure the assignment of missing 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7 / 9

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]

• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]
where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

From RGF2 to ICPDL.
Take φ. If satisfiable, φ has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary Uα per each 1-type α from αφ.
2. Fresh binary Bβ per each 2-type β from βφ restricted to σFO + all binary predicates in σreg from φ.

Translation almost easy, e.g. ∀x1 γ(x1) → ∃x2 π(x1x2) ∧ ϕ(x1x2) 7→

[⋆]
(∨

α|=γ Uα → ⟨π ∩ ⋃
β|=ϕ Bβ⟩.⊤

)

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q Atr :=
1

2

3

4

5

R,Bβ1

Bβ2

R,Bβ2

R,Bβ3

T

T

Uα1Uα2

Uα3

?

? ?

Main challenge: ensure the assignment of missing 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7 / 9

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2),

[∀reg-conjuncts]
where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

From RGF2 to ICPDL.
Take φ. If satisfiable, φ has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary Uα per each 1-type α from αφ.
2. Fresh binary Bβ per each 2-type β from βφ restricted to σFO + all binary predicates in σreg from φ.

Translation almost easy, e.g. ∀x1 γ(x1) → ∃x2 π(x1x2) ∧ ϕ(x1x2) 7→

[⋆]
(∨

α|=γ Uα → ⟨π ∩ ⋃
β|=ϕ Bβ⟩.⊤

)

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q Atr :=
1

2

3

4

5

R,Bβ1

Bβ2

R,Bβ2

R,Bβ3

T

T

Uα1Uα2

Uα3

?

? ?

Main challenge: ensure the assignment of missing 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7 / 9

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

From RGF2 to ICPDL.
Take φ. If satisfiable, φ has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary Uα per each 1-type α from αφ.
2. Fresh binary Bβ per each 2-type β from βφ restricted to σFO + all binary predicates in σreg from φ.

Translation almost easy, e.g. ∀x1 γ(x1) → ∃x2 π(x1x2) ∧ ϕ(x1x2) 7→

[⋆]
(∨

α|=γ Uα → ⟨π ∩ ⋃
β|=ϕ Bβ⟩.⊤

)

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q Atr :=
1

2

3

4

5

R,Bβ1

Bβ2

R,Bβ2

R,Bβ3

T

T

Uα1Uα2

Uα3

?

? ?

Main challenge: ensure the assignment of missing 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7 / 9

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩,

and all other formulae are quantifier-free and over σFO.

From RGF2 to ICPDL.
Take φ. If satisfiable, φ has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary Uα per each 1-type α from αφ.
2. Fresh binary Bβ per each 2-type β from βφ restricted to σFO + all binary predicates in σreg from φ.

Translation almost easy, e.g. ∀x1 γ(x1) → ∃x2 π(x1x2) ∧ ϕ(x1x2) 7→

[⋆]
(∨

α|=γ Uα → ⟨π ∩ ⋃
β|=ϕ Bβ⟩.⊤

)

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q Atr :=
1

2

3

4

5

R,Bβ1

Bβ2

R,Bβ2

R,Bβ3

T

T

Uα1Uα2

Uα3

?

? ?

Main challenge: ensure the assignment of missing 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7 / 9

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

From RGF2 to ICPDL.
Take φ. If satisfiable, φ has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary Uα per each 1-type α from αφ.
2. Fresh binary Bβ per each 2-type β from βφ restricted to σFO + all binary predicates in σreg from φ.

Translation almost easy, e.g. ∀x1 γ(x1) → ∃x2 π(x1x2) ∧ ϕ(x1x2) 7→

[⋆]
(∨

α|=γ Uα → ⟨π ∩ ⋃
β|=ϕ Bβ⟩.⊤

)

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q Atr :=
1

2

3

4

5

R,Bβ1

Bβ2

R,Bβ2

R,Bβ3

T

T

Uα1Uα2

Uα3

?

? ?

Main challenge: ensure the assignment of missing 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7 / 9

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

From RGF2 to ICPDL.
Take φ. If satisfiable, φ has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary Uα per each 1-type α from αφ.
2. Fresh binary Bβ per each 2-type β from βφ restricted to σFO + all binary predicates in σreg from φ.

Translation almost easy, e.g. ∀x1 γ(x1) → ∃x2 π(x1x2) ∧ ϕ(x1x2) 7→

[⋆]
(∨

α|=γ Uα → ⟨π ∩ ⋃
β|=ϕ Bβ⟩.⊤

)

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q Atr :=
1

2

3

4

5

R,Bβ1

Bβ2

R,Bβ2

R,Bβ3

T

T

Uα1Uα2

Uα3

?

? ?

Main challenge: ensure the assignment of missing 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7 / 9

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

From RGF2 to ICPDL.

Take φ. If satisfiable, φ has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary Uα per each 1-type α from αφ.
2. Fresh binary Bβ per each 2-type β from βφ restricted to σFO + all binary predicates in σreg from φ.

Translation almost easy, e.g. ∀x1 γ(x1) → ∃x2 π(x1x2) ∧ ϕ(x1x2) 7→

[⋆]
(∨

α|=γ Uα → ⟨π ∩ ⋃
β|=ϕ Bβ⟩.⊤

)

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q Atr :=
1

2

3

4

5

R,Bβ1

Bβ2

R,Bβ2

R,Bβ3

T

T

Uα1Uα2

Uα3

?

? ?

Main challenge: ensure the assignment of missing 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7 / 9

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

From RGF2 to ICPDL.
Take φ. If satisfiable, φ has a model realizing at most exponentially many 2-types.

Our vocabulary contains:
1. Fresh unary Uα per each 1-type α from αφ.
2. Fresh binary Bβ per each 2-type β from βφ restricted to σFO + all binary predicates in σreg from φ.

Translation almost easy, e.g. ∀x1 γ(x1) → ∃x2 π(x1x2) ∧ ϕ(x1x2) 7→

[⋆]
(∨

α|=γ Uα → ⟨π ∩ ⋃
β|=ϕ Bβ⟩.⊤

)

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q Atr :=
1

2

3

4

5

R,Bβ1

Bβ2

R,Bβ2

R,Bβ3

T

T

Uα1Uα2

Uα3

?

? ?

Main challenge: ensure the assignment of missing 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7 / 9

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

From RGF2 to ICPDL.
Take φ. If satisfiable, φ has a model realizing at most exponentially many 2-types. Our vocabulary contains:

1. Fresh unary Uα per each 1-type α from αφ.
2. Fresh binary Bβ per each 2-type β from βφ restricted to σFO + all binary predicates in σreg from φ.

Translation almost easy, e.g. ∀x1 γ(x1) → ∃x2 π(x1x2) ∧ ϕ(x1x2) 7→

[⋆]
(∨

α|=γ Uα → ⟨π ∩ ⋃
β|=ϕ Bβ⟩.⊤

)

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q Atr :=
1

2

3

4

5

R,Bβ1

Bβ2

R,Bβ2

R,Bβ3

T

T

Uα1Uα2

Uα3

?

? ?

Main challenge: ensure the assignment of missing 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7 / 9

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

From RGF2 to ICPDL.
Take φ. If satisfiable, φ has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary Uα per each 1-type α from αφ.

2. Fresh binary Bβ per each 2-type β from βφ restricted to σFO + all binary predicates in σreg from φ.

Translation almost easy, e.g. ∀x1 γ(x1) → ∃x2 π(x1x2) ∧ ϕ(x1x2) 7→

[⋆]
(∨

α|=γ Uα → ⟨π ∩ ⋃
β|=ϕ Bβ⟩.⊤

)

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q Atr :=
1

2

3

4

5

R,Bβ1

Bβ2

R,Bβ2

R,Bβ3

T

T

Uα1Uα2

Uα3

?

? ?

Main challenge: ensure the assignment of missing 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7 / 9

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

From RGF2 to ICPDL.
Take φ. If satisfiable, φ has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary Uα per each 1-type α from αφ.
2. Fresh binary Bβ per each 2-type β from βφ restricted to σFO

+ all binary predicates in σreg from φ.

Translation almost easy, e.g. ∀x1 γ(x1) → ∃x2 π(x1x2) ∧ ϕ(x1x2) 7→

[⋆]
(∨

α|=γ Uα → ⟨π ∩ ⋃
β|=ϕ Bβ⟩.⊤

)

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q Atr :=
1

2

3

4

5

R,Bβ1

Bβ2

R,Bβ2

R,Bβ3

T

T

Uα1Uα2

Uα3

?

? ?

Main challenge: ensure the assignment of missing 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7 / 9

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

From RGF2 to ICPDL.
Take φ. If satisfiable, φ has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary Uα per each 1-type α from αφ.
2. Fresh binary Bβ per each 2-type β from βφ restricted to σFO + all binary predicates in σreg from φ.

Translation almost easy, e.g. ∀x1 γ(x1) → ∃x2 π(x1x2) ∧ ϕ(x1x2) 7→

[⋆]
(∨

α|=γ Uα → ⟨π ∩ ⋃
β|=ϕ Bβ⟩.⊤

)

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q Atr :=
1

2

3

4

5

R,Bβ1

Bβ2

R,Bβ2

R,Bβ3

T

T

Uα1Uα2

Uα3

?

? ?

Main challenge: ensure the assignment of missing 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7 / 9

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

From RGF2 to ICPDL.
Take φ. If satisfiable, φ has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary Uα per each 1-type α from αφ.
2. Fresh binary Bβ per each 2-type β from βφ restricted to σFO + all binary predicates in σreg from φ.

Translation almost easy, e.g. ∀x1 γ(x1) → ∃x2 π(x1x2) ∧ ϕ(x1x2) 7→ [⋆]
(∨

α|=γ Uα → ⟨π ∩ ⋃
β|=ϕ Bβ⟩.⊤

)

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q Atr :=
1

2

3

4

5

R,Bβ1

Bβ2

R,Bβ2

R,Bβ3

T

T

Uα1Uα2

Uα3

?

? ?

Main challenge: ensure the assignment of missing 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7 / 9

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

From RGF2 to ICPDL.
Take φ. If satisfiable, φ has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary Uα per each 1-type α from αφ.
2. Fresh binary Bβ per each 2-type β from βφ restricted to σFO + all binary predicates in σreg from φ.

Translation almost easy, e.g. ∀x1 γ(x1) → ∃x2 π(x1x2) ∧ ϕ(x1x2) 7→ [⋆]
(∨

α|=γ Uα → ⟨π ∩ ⋃
β|=ϕ Bβ⟩.⊤

)

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q

Atr :=
1

2

3

4

5

R,Bβ1

Bβ2

R,Bβ2

R,Bβ3

T

T

Uα1Uα2

Uα3

?

? ?

Main challenge: ensure the assignment of missing 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7 / 9

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

From RGF2 to ICPDL.
Take φ. If satisfiable, φ has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary Uα per each 1-type α from αφ.
2. Fresh binary Bβ per each 2-type β from βφ restricted to σFO + all binary predicates in σreg from φ.

Translation almost easy, e.g. ∀x1 γ(x1) → ∃x2 π(x1x2) ∧ ϕ(x1x2) 7→ [⋆]
(∨

α|=γ Uα → ⟨π ∩ ⋃
β|=ϕ Bβ⟩.⊤

)

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q Atr :=
1

2

3

4

5

R,Bβ1

Bβ2

R,Bβ2

R,Bβ3

T

T

Uα1Uα2

Uα3

?

? ?

Main challenge: ensure the assignment of missing 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7 / 9

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

From RGF2 to ICPDL.
Take φ. If satisfiable, φ has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary Uα per each 1-type α from αφ.
2. Fresh binary Bβ per each 2-type β from βφ restricted to σFO + all binary predicates in σreg from φ.

Translation almost easy, e.g. ∀x1 γ(x1) → ∃x2 π(x1x2) ∧ ϕ(x1x2) 7→ [⋆]
(∨

α|=γ Uα → ⟨π ∩ ⋃
β|=ϕ Bβ⟩.⊤

)

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q Atr :=
1

2

3

4

5

R,Bβ1

Bβ2

R,Bβ2

R,Bβ3

T

T

Uα1Uα2

Uα3

?

? ?

Main challenge: ensure the assignment of missing 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7 / 9

• ∀x1λ(x1) [the general universal conjunct]
• ∀x1 ηi(x1) → ∃x2 ϑi(x1x2) ∧ ψi(x1x2) [∃FO-conjuncts]
• ∀x1∀x2 ηi(x1x2) → ψi(x1x2) [∀FO-conjuncts]
• ∀x1 γi(x1) → ∃x2 πi(x1x2) ∧ ϕi(x1x2) [∃reg-conjuncts]
• ∀x1∀x2 πi(x1x2) → ϕi(x1x2), [∀reg-conjuncts]

where all πi are RPQ with ∩, and all other formulae are quantifier-free and over σFO.

From RGF2 to ICPDL.
Take φ. If satisfiable, φ has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary Uα per each 1-type α from αφ.
2. Fresh binary Bβ per each 2-type β from βφ restricted to σFO + all binary predicates in σreg from φ.

Translation almost easy, e.g. ∀x1 γ(x1) → ∃x2 π(x1x2) ∧ ϕ(x1x2) 7→ [⋆]
(∨

α|=γ Uα → ⟨π ∩ ⋃
β|=ϕ Bβ⟩.⊤

)

A :=
1

2

3

4

5

R

T

R

R, S

T

T
p, q p

qq

q Atr :=
1

2

3

4

5

R,Bβ1

Bβ2

R,Bβ2

R,Bβ3

T

T

Uα1Uα2

Uα3

?

? ?

Main challenge: ensure the assignment of missing 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7 / 9

From the Two-Variable Case to the General Case (Many details omitted)

Step I: Transform your input φ in RGF to Scott’s normal form.
Step II: Construct φreg in RGF2 and φGF in GF as follows:

• φGF contains all ∃FO and ∀FO conjuncts of φ.
• φreg contains all ∃reg and ∀reg conjuncts of φ and the two-variable versions of ∃FO and ∀FO conjuncts.
• Synchronization: require that models of φreg and φFO realize the same sets of 1-types and 2-types.

Step III: Test both φreg and φGF for satisfiability (this gives the right upper bound). Viola!

Correctness Proof: The Fusion
• Take models A |= φreg and A |= φGF.
• Equilize their domains by Löwenheim Skolem (w.l.o.g. to ℵ0).
• We next ensure that for each 1-type α in αφ:

#α in A is equal to #α in B.
• Form a two-dimensional grid C. Each row (column) isomorphic to A (B).
• C is almost a model of φ, but some elements may miss witnesses for ∃FO-conjuncts.
• Provide them with a circular-witnessing-scheme á la Grädel & Kolaitis & Vardi.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8 / 9

From the Two-Variable Case to the General Case (Many details omitted)
Step I: Transform your input φ in RGF to Scott’s normal form.

Step II: Construct φreg in RGF2 and φGF in GF as follows:
• φGF contains all ∃FO and ∀FO conjuncts of φ.
• φreg contains all ∃reg and ∀reg conjuncts of φ and the two-variable versions of ∃FO and ∀FO conjuncts.
• Synchronization: require that models of φreg and φFO realize the same sets of 1-types and 2-types.

Step III: Test both φreg and φGF for satisfiability (this gives the right upper bound). Viola!

Correctness Proof: The Fusion
• Take models A |= φreg and A |= φGF.
• Equilize their domains by Löwenheim Skolem (w.l.o.g. to ℵ0).
• We next ensure that for each 1-type α in αφ:

#α in A is equal to #α in B.
• Form a two-dimensional grid C. Each row (column) isomorphic to A (B).
• C is almost a model of φ, but some elements may miss witnesses for ∃FO-conjuncts.
• Provide them with a circular-witnessing-scheme á la Grädel & Kolaitis & Vardi.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8 / 9

From the Two-Variable Case to the General Case (Many details omitted)
Step I: Transform your input φ in RGF to Scott’s normal form.
Step II: Construct φreg in RGF2 and φGF in GF as follows:

• φGF contains all ∃FO and ∀FO conjuncts of φ.
• φreg contains all ∃reg and ∀reg conjuncts of φ and the two-variable versions of ∃FO and ∀FO conjuncts.
• Synchronization: require that models of φreg and φFO realize the same sets of 1-types and 2-types.

Step III: Test both φreg and φGF for satisfiability (this gives the right upper bound). Viola!

Correctness Proof: The Fusion
• Take models A |= φreg and A |= φGF.
• Equilize their domains by Löwenheim Skolem (w.l.o.g. to ℵ0).
• We next ensure that for each 1-type α in αφ:

#α in A is equal to #α in B.
• Form a two-dimensional grid C. Each row (column) isomorphic to A (B).
• C is almost a model of φ, but some elements may miss witnesses for ∃FO-conjuncts.
• Provide them with a circular-witnessing-scheme á la Grädel & Kolaitis & Vardi.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8 / 9

From the Two-Variable Case to the General Case (Many details omitted)
Step I: Transform your input φ in RGF to Scott’s normal form.
Step II: Construct φreg in RGF2 and φGF in GF as follows:

• φGF contains all ∃FO and ∀FO conjuncts of φ.

• φreg contains all ∃reg and ∀reg conjuncts of φ and the two-variable versions of ∃FO and ∀FO conjuncts.
• Synchronization: require that models of φreg and φFO realize the same sets of 1-types and 2-types.

Step III: Test both φreg and φGF for satisfiability (this gives the right upper bound). Viola!

Correctness Proof: The Fusion
• Take models A |= φreg and A |= φGF.
• Equilize their domains by Löwenheim Skolem (w.l.o.g. to ℵ0).
• We next ensure that for each 1-type α in αφ:

#α in A is equal to #α in B.
• Form a two-dimensional grid C. Each row (column) isomorphic to A (B).
• C is almost a model of φ, but some elements may miss witnesses for ∃FO-conjuncts.
• Provide them with a circular-witnessing-scheme á la Grädel & Kolaitis & Vardi.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8 / 9

From the Two-Variable Case to the General Case (Many details omitted)
Step I: Transform your input φ in RGF to Scott’s normal form.
Step II: Construct φreg in RGF2 and φGF in GF as follows:

• φGF contains all ∃FO and ∀FO conjuncts of φ.
• φreg contains all ∃reg and ∀reg conjuncts of φ and the two-variable versions of ∃FO and ∀FO conjuncts.

• Synchronization: require that models of φreg and φFO realize the same sets of 1-types and 2-types.
Step III: Test both φreg and φGF for satisfiability (this gives the right upper bound). Viola!

Correctness Proof: The Fusion
• Take models A |= φreg and A |= φGF.
• Equilize their domains by Löwenheim Skolem (w.l.o.g. to ℵ0).
• We next ensure that for each 1-type α in αφ:

#α in A is equal to #α in B.
• Form a two-dimensional grid C. Each row (column) isomorphic to A (B).
• C is almost a model of φ, but some elements may miss witnesses for ∃FO-conjuncts.
• Provide them with a circular-witnessing-scheme á la Grädel & Kolaitis & Vardi.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8 / 9

From the Two-Variable Case to the General Case (Many details omitted)
Step I: Transform your input φ in RGF to Scott’s normal form.
Step II: Construct φreg in RGF2 and φGF in GF as follows:

• φGF contains all ∃FO and ∀FO conjuncts of φ.
• φreg contains all ∃reg and ∀reg conjuncts of φ and the two-variable versions of ∃FO and ∀FO conjuncts.
• Synchronization: require that models of φreg and φFO realize the same sets of 1-types and 2-types.

Step III: Test both φreg and φGF for satisfiability (this gives the right upper bound). Viola!

Correctness Proof: The Fusion
• Take models A |= φreg and A |= φGF.
• Equilize their domains by Löwenheim Skolem (w.l.o.g. to ℵ0).
• We next ensure that for each 1-type α in αφ:

#α in A is equal to #α in B.
• Form a two-dimensional grid C. Each row (column) isomorphic to A (B).
• C is almost a model of φ, but some elements may miss witnesses for ∃FO-conjuncts.
• Provide them with a circular-witnessing-scheme á la Grädel & Kolaitis & Vardi.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8 / 9

From the Two-Variable Case to the General Case (Many details omitted)
Step I: Transform your input φ in RGF to Scott’s normal form.
Step II: Construct φreg in RGF2 and φGF in GF as follows:

• φGF contains all ∃FO and ∀FO conjuncts of φ.
• φreg contains all ∃reg and ∀reg conjuncts of φ and the two-variable versions of ∃FO and ∀FO conjuncts.
• Synchronization: require that models of φreg and φFO realize the same sets of 1-types and 2-types.

Step III: Test both φreg and φGF for satisfiability (this gives the right upper bound). Viola!

Correctness Proof: The Fusion
• Take models A |= φreg and A |= φGF.
• Equilize their domains by Löwenheim Skolem (w.l.o.g. to ℵ0).
• We next ensure that for each 1-type α in αφ:

#α in A is equal to #α in B.
• Form a two-dimensional grid C. Each row (column) isomorphic to A (B).
• C is almost a model of φ, but some elements may miss witnesses for ∃FO-conjuncts.
• Provide them with a circular-witnessing-scheme á la Grädel & Kolaitis & Vardi.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8 / 9

From the Two-Variable Case to the General Case (Many details omitted)
Step I: Transform your input φ in RGF to Scott’s normal form.
Step II: Construct φreg in RGF2 and φGF in GF as follows:

• φGF contains all ∃FO and ∀FO conjuncts of φ.
• φreg contains all ∃reg and ∀reg conjuncts of φ and the two-variable versions of ∃FO and ∀FO conjuncts.
• Synchronization: require that models of φreg and φFO realize the same sets of 1-types and 2-types.

Step III: Test both φreg and φGF for satisfiability (this gives the right upper bound). Viola!

Correctness Proof: The Fusion
• Take models A |= φreg and A |= φGF.
• Equilize their domains by Löwenheim Skolem (w.l.o.g. to ℵ0).
• We next ensure that for each 1-type α in αφ:

#α in A is equal to #α in B.
• Form a two-dimensional grid C. Each row (column) isomorphic to A (B).
• C is almost a model of φ, but some elements may miss witnesses for ∃FO-conjuncts.
• Provide them with a circular-witnessing-scheme á la Grädel & Kolaitis & Vardi.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8 / 9

From the Two-Variable Case to the General Case (Many details omitted)
Step I: Transform your input φ in RGF to Scott’s normal form.
Step II: Construct φreg in RGF2 and φGF in GF as follows:

• φGF contains all ∃FO and ∀FO conjuncts of φ.
• φreg contains all ∃reg and ∀reg conjuncts of φ and the two-variable versions of ∃FO and ∀FO conjuncts.
• Synchronization: require that models of φreg and φFO realize the same sets of 1-types and 2-types.

Step III: Test both φreg and φGF for satisfiability (this gives the right upper bound). Viola!

Correctness Proof: The Fusion

• Take models A |= φreg and A |= φGF.
• Equilize their domains by Löwenheim Skolem (w.l.o.g. to ℵ0).
• We next ensure that for each 1-type α in αφ:

#α in A is equal to #α in B.
• Form a two-dimensional grid C. Each row (column) isomorphic to A (B).
• C is almost a model of φ, but some elements may miss witnesses for ∃FO-conjuncts.
• Provide them with a circular-witnessing-scheme á la Grädel & Kolaitis & Vardi.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8 / 9

From the Two-Variable Case to the General Case (Many details omitted)
Step I: Transform your input φ in RGF to Scott’s normal form.
Step II: Construct φreg in RGF2 and φGF in GF as follows:

• φGF contains all ∃FO and ∀FO conjuncts of φ.
• φreg contains all ∃reg and ∀reg conjuncts of φ and the two-variable versions of ∃FO and ∀FO conjuncts.
• Synchronization: require that models of φreg and φFO realize the same sets of 1-types and 2-types.

Step III: Test both φreg and φGF for satisfiability (this gives the right upper bound). Viola!

Correctness Proof: The Fusion
• Take models A |= φreg and A |= φGF.

• Equilize their domains by Löwenheim Skolem (w.l.o.g. to ℵ0).
• We next ensure that for each 1-type α in αφ:

#α in A is equal to #α in B.
• Form a two-dimensional grid C. Each row (column) isomorphic to A (B).
• C is almost a model of φ, but some elements may miss witnesses for ∃FO-conjuncts.
• Provide them with a circular-witnessing-scheme á la Grädel & Kolaitis & Vardi.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8 / 9

From the Two-Variable Case to the General Case (Many details omitted)
Step I: Transform your input φ in RGF to Scott’s normal form.
Step II: Construct φreg in RGF2 and φGF in GF as follows:

• φGF contains all ∃FO and ∀FO conjuncts of φ.
• φreg contains all ∃reg and ∀reg conjuncts of φ and the two-variable versions of ∃FO and ∀FO conjuncts.
• Synchronization: require that models of φreg and φFO realize the same sets of 1-types and 2-types.

Step III: Test both φreg and φGF for satisfiability (this gives the right upper bound). Viola!

Correctness Proof: The Fusion
• Take models A |= φreg and A |= φGF.
• Equilize their domains by Löwenheim Skolem (w.l.o.g. to ℵ0).

• We next ensure that for each 1-type α in αφ:
#α in A is equal to #α in B.

• Form a two-dimensional grid C. Each row (column) isomorphic to A (B).
• C is almost a model of φ, but some elements may miss witnesses for ∃FO-conjuncts.
• Provide them with a circular-witnessing-scheme á la Grädel & Kolaitis & Vardi.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8 / 9

From the Two-Variable Case to the General Case (Many details omitted)
Step I: Transform your input φ in RGF to Scott’s normal form.
Step II: Construct φreg in RGF2 and φGF in GF as follows:

• φGF contains all ∃FO and ∀FO conjuncts of φ.
• φreg contains all ∃reg and ∀reg conjuncts of φ and the two-variable versions of ∃FO and ∀FO conjuncts.
• Synchronization: require that models of φreg and φFO realize the same sets of 1-types and 2-types.

Step III: Test both φreg and φGF for satisfiability (this gives the right upper bound). Viola!

Correctness Proof: The Fusion
• Take models A |= φreg and A |= φGF.
• Equilize their domains by Löwenheim Skolem (w.l.o.g. to ℵ0).
• We next ensure that for each 1-type α in αφ:

#α in A is equal to #α in B.
• Form a two-dimensional grid C. Each row (column) isomorphic to A (B).
• C is almost a model of φ, but some elements may miss witnesses for ∃FO-conjuncts.
• Provide them with a circular-witnessing-scheme á la Grädel & Kolaitis & Vardi.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8 / 9

From the Two-Variable Case to the General Case (Many details omitted)
Step I: Transform your input φ in RGF to Scott’s normal form.
Step II: Construct φreg in RGF2 and φGF in GF as follows:

• φGF contains all ∃FO and ∀FO conjuncts of φ.
• φreg contains all ∃reg and ∀reg conjuncts of φ and the two-variable versions of ∃FO and ∀FO conjuncts.
• Synchronization: require that models of φreg and φFO realize the same sets of 1-types and 2-types.

Step III: Test both φreg and φGF for satisfiability (this gives the right upper bound). Viola!

Correctness Proof: The Fusion
• Take models A |= φreg and A |= φGF.
• Equilize their domains by Löwenheim Skolem (w.l.o.g. to ℵ0).
• We next ensure that for each 1-type α in αφ:

#α in A is equal to #α in B.

• Form a two-dimensional grid C. Each row (column) isomorphic to A (B).
• C is almost a model of φ, but some elements may miss witnesses for ∃FO-conjuncts.
• Provide them with a circular-witnessing-scheme á la Grädel & Kolaitis & Vardi.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8 / 9

From the Two-Variable Case to the General Case (Many details omitted)
Step I: Transform your input φ in RGF to Scott’s normal form.
Step II: Construct φreg in RGF2 and φGF in GF as follows:

• φGF contains all ∃FO and ∀FO conjuncts of φ.
• φreg contains all ∃reg and ∀reg conjuncts of φ and the two-variable versions of ∃FO and ∀FO conjuncts.
• Synchronization: require that models of φreg and φFO realize the same sets of 1-types and 2-types.

Step III: Test both φreg and φGF for satisfiability (this gives the right upper bound). Viola!

Correctness Proof: The Fusion
• Take models A |= φreg and A |= φGF.
• Equilize their domains by Löwenheim Skolem (w.l.o.g. to ℵ0).
• We next ensure that for each 1-type α in αφ:

#α in A is equal to #α in B.
• Form a two-dimensional grid C. Each row (column) isomorphic to A (B).

• C is almost a model of φ, but some elements may miss witnesses for ∃FO-conjuncts.
• Provide them with a circular-witnessing-scheme á la Grädel & Kolaitis & Vardi.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8 / 9

From the Two-Variable Case to the General Case (Many details omitted)
Step I: Transform your input φ in RGF to Scott’s normal form.
Step II: Construct φreg in RGF2 and φGF in GF as follows:

• φGF contains all ∃FO and ∀FO conjuncts of φ.
• φreg contains all ∃reg and ∀reg conjuncts of φ and the two-variable versions of ∃FO and ∀FO conjuncts.
• Synchronization: require that models of φreg and φFO realize the same sets of 1-types and 2-types.

Step III: Test both φreg and φGF for satisfiability (this gives the right upper bound). Viola!

Correctness Proof: The Fusion
• Take models A |= φreg and A |= φGF.
• Equilize their domains by Löwenheim Skolem (w.l.o.g. to ℵ0).
• We next ensure that for each 1-type α in αφ:

#α in A is equal to #α in B.
• Form a two-dimensional grid C. Each row (column) isomorphic to A (B).
• C is almost a model of φ, but some elements may miss witnesses for ∃FO-conjuncts.

• Provide them with a circular-witnessing-scheme á la Grädel & Kolaitis & Vardi.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8 / 9

From the Two-Variable Case to the General Case (Many details omitted)
Step I: Transform your input φ in RGF to Scott’s normal form.
Step II: Construct φreg in RGF2 and φGF in GF as follows:

• φGF contains all ∃FO and ∀FO conjuncts of φ.
• φreg contains all ∃reg and ∀reg conjuncts of φ and the two-variable versions of ∃FO and ∀FO conjuncts.
• Synchronization: require that models of φreg and φFO realize the same sets of 1-types and 2-types.

Step III: Test both φreg and φGF for satisfiability (this gives the right upper bound). Viola!

Correctness Proof: The Fusion
• Take models A |= φreg and A |= φGF.
• Equilize their domains by Löwenheim Skolem (w.l.o.g. to ℵ0).
• We next ensure that for each 1-type α in αφ:

#α in A is equal to #α in B.
• Form a two-dimensional grid C. Each row (column) isomorphic to A (B).
• C is almost a model of φ, but some elements may miss witnesses for ∃FO-conjuncts.
• Provide them with a circular-witnessing-scheme á la Grädel & Kolaitis & Vardi.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8 / 9

Conclusions

Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Theorem (under submission with E. Kieroński)
There exists an ExpSpace-complete sublogic of RGF[·+, ·∗].

Combines ideas from the fluted fragment and one-way guards.

Questions?

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 9 / 9

Conclusions
Consider disjoint vocabularies σFO and σreg.

RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Theorem (under submission with E. Kieroński)
There exists an ExpSpace-complete sublogic of RGF[·+, ·∗].

Combines ideas from the fluted fragment and one-way guards.

Questions?

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 9 / 9

Conclusions
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by

allowing ICPDL programs π(xy) over σreg as binary guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Theorem (under submission with E. Kieroński)
There exists an ExpSpace-complete sublogic of RGF[·+, ·∗].

Combines ideas from the fluted fragment and one-way guards.

Questions?

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 9 / 9

Conclusions
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Theorem (under submission with E. Kieroński)
There exists an ExpSpace-complete sublogic of RGF[·+, ·∗].

Combines ideas from the fluted fragment and one-way guards.

Questions?

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 9 / 9

Conclusions
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Theorem (under submission with E. Kieroński)
There exists an ExpSpace-complete sublogic of RGF[·+, ·∗].

Combines ideas from the fluted fragment and one-way guards.

Questions?

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 9 / 9

Conclusions
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea:

solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Theorem (under submission with E. Kieroński)
There exists an ExpSpace-complete sublogic of RGF[·+, ·∗].

Combines ideas from the fluted fragment and one-way guards.

Questions?

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 9 / 9

Conclusions
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and

lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Theorem (under submission with E. Kieroński)
There exists an ExpSpace-complete sublogic of RGF[·+, ·∗].

Combines ideas from the fluted fragment and one-way guards.

Questions?

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 9 / 9

Conclusions
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Theorem (under submission with E. Kieroński)
There exists an ExpSpace-complete sublogic of RGF[·+, ·∗].

Combines ideas from the fluted fragment and one-way guards.

Questions?

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 9 / 9

Conclusions
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Theorem (under submission with E. Kieroński)
There exists an ExpSpace-complete sublogic of RGF[·+, ·∗].

Combines ideas from the fluted fragment and one-way guards.

Questions?

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 9 / 9

Conclusions
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Theorem (under submission with E. Kieroński)
There exists an ExpSpace-complete sublogic of RGF[·+, ·∗].

Combines ideas from the fluted fragment and one-way guards.

Questions?

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 9 / 9

Conclusions
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Theorem (under submission with E. Kieroński)
There exists an ExpSpace-complete sublogic of RGF[·+, ·∗].

Combines ideas from the fluted fragment and one-way guards.

Questions?

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 9 / 9

Conclusions
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Theorem (under submission with E. Kieroński)
There exists an ExpSpace-complete sublogic of RGF[·+, ·∗].

Combines ideas from the fluted fragment and one-way guards.

Questions?

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 9 / 9

Conclusions
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Theorem (under submission with E. Kieroński)
There exists an ExpSpace-complete sublogic of RGF[·+, ·∗].

Combines ideas from the fluted fragment and one-way guards.

Questions?

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 9 / 9

Conclusions
Consider disjoint vocabularies σFO and σreg.
RGF is the least extension of GF over σFO by allowing ICPDL programs π(xy) over σreg as binary guards.

Theorem (under submission with E. Kieroński)
The satisfiability problem for RGF is 2ExpTime-complete.

Proof idea: solve RGF2 via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (under submission with E. Kieroński)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris&Tendera from ICALP 2013.

Theorem (under submission with E. Kieroński)
There exists an ExpSpace-complete sublogic of RGF[·+, ·∗].

Combines ideas from the fluted fragment and one-way guards.

Questions?
Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 9 / 9

