Separating Regular Relations

Pablo Barceló Instituto de Ingeniería Matemática y Computacional Pontificia Universidad Católica de Chile & IMFD Chile & CENIA Chile

REGULAR RELATIONS

Regular Relations

Intuition: Regular languages over $\Sigma^* \times \ldots \times \Sigma^*$ (*n* times)

Accepted by: Synchronous automata over $(\Sigma \cup \{ \perp \})^n$

 $\bar{w}_1 = a \ b \ a \ b$ $\bar{w}_2 = a \ a \ a \ b \ b \ b$

 $\bar{w}_1 = a \ b \ a \ b \perp \perp$ $\bar{w}_2 = a \ a \ a \ b \ b$

 $\bar{w}_1 = a \ b \ a \ b \perp \perp$ $\bar{w}_2 = a \ a \ a \ b \ b \ b$ q_0 Initial state

$$\bar{w}_1 = a \ b \ a \ b \perp \perp$$
$$\bar{w}_2 = a \ a \ a \ b \ b \ b$$
$$q_1 = \delta(q_0, (a, a))$$

$$\bar{w}_1 = a \ b \ a \ b \ \bot \bot$$
$$\bar{w}_2 = a \ a \ a \ b \ b \ b$$
$$q_2 = \delta(q_1, (b, a))$$

 $\bar{w}_1 = a \ b \ a \ b \perp \perp$ $\bar{w}_2 = a \ a \ a \ b \ b \ b$ $q_3 = \delta(q_2, (a, a))$

$$\bar{w}_1 = a \ b \ a \ b \ \bot \bot$$
$$\bar{w}_2 = a \ a \ a \ b \ b \ b$$
$$q_4 = \delta(q_3, (b, b))$$

 $\bar{w}_1 = a \ b \ a \ b \perp \perp$ $\bar{w}_2 = a \ a \ a \ b \ b \ b$ $q_5 = \delta(q_4, (\perp, b))$

 $\bar{w}_1 = a \ b \ a \ b \perp \perp$ $\bar{w}_2 = a \ a \ a \ b \ b \ b$ $q_6 = \delta(q_5, (\perp, b))$

$$\bar{w}_1 = a \ b \ a \ b \ \bot \ \bot$$
$$\bar{w}_2 = a \ a \ a \ b \ b \ b$$
$$q_6 = \delta(q_5, (\perp, b))$$

The pair (\bar{w}_1, \bar{w}_2) is accepted by the synchronous automata iff q_6 is a final state

Regular Relations

A relation $L \subseteq \Sigma^* \times \Sigma^*$ is regular iff there exists a synchronous automata that accepts precisely the pairs of words in L

Examples of Regular Relations

Equal-length relation: Pairs (\bar{w}_1, \bar{w}_2) of words of the same length

Prefix relation: Pairs (\bar{w}_1, \bar{w}_2) of words such that \bar{w}_1 is a prefix of \bar{w}_2

Edit distance: Pairs (\bar{w}_1, \bar{w}_2) of words such that \bar{w}_1 is at edit distance at most k from \bar{w}_2 , for a fixed k > 0

Examples of Non-Regular Relations

Suffix relation: Pairs (\bar{w}_1, \bar{w}_2) of words such that \bar{w}_1 is a suffix of \bar{w}_2

Subsequence relation: Pairs (\bar{w}_1, \bar{w}_2) of words such that \bar{w}_1 is a (scattered) subsequence of \bar{w}_2

SEPARABILITY / DEFINABILITY

Separability

Given two regular relations L_1 and L_2 , is there a "simple" regular relation L such that:

$$L_1 \subseteq L$$
 and $L_2 \cap L = \emptyset$?

Definability

Given a regular relation L, is there a "simple" regular relation R such that L = R?

A Simple Class of Regular Relations

Recognizable relations: Finite unions of products of regular languages

The pair (\bar{w}_1, \bar{w}_2) is accepted by the recognizable relation

$$\bigcup_{i \le n} L_i^1 \times L_i^2$$

iff \bar{w}_1 is accepted by L_i^1 and \bar{w}_2 is accepted by L_i^2 , for some $i \leq n$

The Definability Problem

Theorem (B., Hong, Le, Lin, Niskanen, 2019)

Given a regular relation *L*, is there a recognizable relation *R* such that L = R?

This problem is PSPACE-complete (NLOGSPACE-complete if L is deterministic)

The Separability Problem

Given two regular relations L_1 and L_2 , is there a recognizable relation L such that:

$$L_1 \subseteq L$$
 and $L_2 \cap L = \emptyset$?

The decidability of this problem is **OPEN!**

REGULAR GRAPHS

Regular Graphs

Those of the form:

$$\mathscr{G}_L = (\Sigma^*, L),$$

where *L* is a regular relation over $\Sigma^* \times \Sigma^*$

Separability and Colorability

Theorem (B., Figueira, Morvan, 2023)

There are polynomial-time reductions between the following problems:

(1) Given two regular relations L_1 and L_2 , is there a recognizable relation L such that:

$$L_1 \subseteq L$$
 and $L_2 \cap L = \emptyset$?

(2) Given a regular relation L, is the regular graph \mathscr{G}_L finitely colorable with every color defining a regular language?

Finite Colorability

For regular graphs

Finite colorability with regular colors: OPEN

Finite colorability: OPEN

On Cliques

For regular graphs

Existence of infinite cliques: Decidable (Kuske, Lohrey, 2010)

Existence of arbitrarily large cliques: OPEN

k-Colorability

Theorem (B., Figueira, Morvan, 2023)

The following problem is undecidable for each fixed k > 1:

Given a regular relation L, is the regular graph $\mathcal{G}_L k$ —colorable with every color defining a regular language?

This problem is also undecidable without the restriction of colors being regular sets (Köcher, 2014)

Separability and k-Colorability

Proposition (B., Figueira, Morvan, 2023)

There is a polynomial-time reduction from the first to the second problem:

(1) Given a regular relation L, is the regular graph $\mathcal{G}_L k$ -colorable with every color defining a regular language?

(2) Given two regular relations L_1 and L_2 , is there a recognizable relation $L = \bigcup_{i \le k} L_i^1 \times L_i^2$ such that:

 $L_1 \subseteq L$ and $L_2 \cap L = \emptyset$?

Conclusion

