Some recent advances in logic and graph property testing

Isolde Adler Joint work with Frederik Harwath, Noleen Köhler, Pan Peng, Joseph Stimpson

FMT Workshop Les Houches 27.5.2025

Welcome to the quest...

Contents

- 1. Property testing the bounded degree model
- 2. Testing logics on restricted graph classes

Property testing: motivation

'Efficiency' when the data set is huge:

Even reading the whole input just once can be too expensive.

Data visualisation of Facebook relationships

Author: Kencf0618, License: Creative Commons Attribution-Share Alike 3.0 Unported

Aim: Sublinear algorithms with local access to the input.

ISOLDE ADLER

LOGIC AND PROPERTY TESTING

- We consider finite, simple, undirected graphs G = (V(G), E(G)).
- Class C of graphs has bounded degree, if there is a constant d ∈ N such that all graphs in C have degree ≤ d.
- We use *n* to denote the number of vertices of *G*.
- All graph classes are closed under isomorphism, and a graph class is sometimes called a property.

FO := First-order logic

- We consider finite, simple, undirected graphs G = (V(G), E(G)).
- Class C of graphs has bounded degree, if there is a constant d ∈ N such that all graphs in C have degree ≤ d.
- We use *n* to denote the number of vertices of *G*.
- All graph classes are closed under isomorphism, and a graph class is sometimes called a property.

FO := First-order logic

- We consider finite, simple, undirected graphs G = (V(G), E(G)).
- Class C of graphs has bounded degree, if there is a constant d ∈ N such that all graphs in C have degree ≤ d.
- We use *n* to denote the number of vertices of *G*.
- All graph classes are closed under isomorphism, and a graph class is sometimes called a property.

FO := First-order logic

- We consider finite, simple, undirected graphs G = (V(G), E(G)).
- Class C of graphs has bounded degree, if there is a constant d ∈ N such that all graphs in C have degree ≤ d.
- We use *n* to denote the number of vertices of *G*.
- All graph classes are closed under isomorphism, and a graph class is sometimes called a property.

FO := First-order logic

- We consider finite, simple, undirected graphs G = (V(G), E(G)).
- Class C of graphs has bounded degree, if there is a constant d ∈ N such that all graphs in C have degree ≤ d.
- We use *n* to denote the number of vertices of *G*.
- All graph classes are closed under isomorphism, and a graph class is sometimes called a property.

FO := First-order logic

From now on: All graphs have degree $\leq d$.

- Input: the number *n* of vertices of *G*, and
- Oracle access to *G*
 - Query: v, for $v \in V(G)$
 - Answer: the 1-neighbourhood of vertex v
- The running time = running time w.r.t. *n*.
- The query complexity = number of oracle queries w.r.t. *n*.

From now on: All graphs have degree $\leq d$.

- Input: the number *n* of vertices of *G*, and
- Oracle access to *G*
 - Query: v, for $v \in V(G)$
 - Answer: the 1-neighbourhood of vertex v
- The running time = running time w.r.t. *n*.
- The query complexity = number of oracle queries w.r.t. *n*.

From now on: All graphs have degree $\leq d$.

- Input: the number *n* of vertices of *G*, and
- Oracle access to G
 - Query: v, for $v \in V(G)$
 - Answer: the 1-neighbourhood of vertex v
- The running time = running time w.r.t. *n*.
- The query complexity = number of oracle queries w.r.t. *n*.

From now on: All graphs have degree $\leq d$.

- Input: the number *n* of vertices of *G*, and
- Oracle access to G
 - Query: v, for $v \in V(G)$
 - Answer: the 1-neighbourhood of vertex v
- The running time = running time w.r.t. *n*.
- The query complexity = number of oracle queries w.r.t. *n*.

From now on: All graphs have degree $\leq d$.

- Input: the number *n* of vertices of *G*, and
- Oracle access to G
 - Query: v, for $v \in V(G)$
 - Answer: the 1-neighbourhood of vertex v
- The running time = running time w.r.t. *n*.
- The query complexity = number of oracle queries w.r.t. *n*.

From now on: All graphs have degree $\leq d$.

- Input: the number *n* of vertices of *G*, and
- Oracle access to G
 - Query: v, for $v \in V(G)$
 - Answer: the 1-neighbourhood of vertex v
- The running time = running time w.r.t. *n*.
- The query complexity = number of oracle queries w.r.t. n.

From now on: All graphs have degree $\leq d$.

- Input: the number *n* of vertices of *G*, and
- Oracle access to G
 - Query: v, for $v \in V(G)$
 - Answer: the 1-neighbourhood of vertex v
- The running time = running time w.r.t. *n*.
- The query complexity = number of oracle queries w.r.t. n.

Decision Problems

Decision Problems

Property Testing = *relaxation of decision problems*

• Let $\varepsilon \in [0, 1]$.

Graphs *G* and *H*, both on *n* vertices, are ε -close, if we can make them isomorphic by modifying up to εdn edges of *G* or *H*. Edge modification = insertion/deletion

- If G, H are not ε -close, then they are ε -far.
- A graph G is ε-close to a class C if G is ε-close to some H ∈ C.
 Otherwise, G is ε-far from C.

- Let ε ∈ [0, 1].
 Graphs *G* and *H*, both on *n* vertices, are ε-close, if we can make them isomorphic by modifying up to εdn edges of *G* or *H*.
 Edge modification = insertion/deletion
- If G, H are not ε -close, then they are ε -far.
- A graph G is ε-close to a class C if G is ε-close to some H ∈ C.
 Otherwise, G is ε-far from C.

Let ε ∈ [0, 1].

Graphs *G* and *H*, both on *n* vertices, are ε -close, if we can make them isomorphic by modifying up to εdn edges of *G* or *H*. Edge modification = insertion/deletion

- If G, H are not ε -*close*, then they are ε -far.
- A graph G is ε-close to a class C if G is ε-close to some H ∈ C.
 Otherwise, G is ε-far from C.

- Let ε ∈ [0, 1].
 Graphs *G* and *H*, both on *n* vertices, are ε-close, if we can make them isomorphic by modifying up to εdn edges of *G* or *H*.
 Edge modification = insertion/deletion
- If G, H are not ε -*close*, then they are ε -far.
- A graph G is ε-close to a class C if G is ε-close to some H ∈ C.
 Otherwise, G is ε-far from C.

Let \mathcal{P} be a property. An ε -tester for \mathcal{P} is a probabilistic algorithm that, given oracle access to *G* and given n := |V(G)| as input, does the following:

1. If $G \in \mathcal{P}$, then the tester accepts with probability $\geq \frac{2}{3}$,

2. if *G* is ε -far from \mathcal{P} , then the tester rejects with probability $\geq \frac{2}{3}$.

 \mathcal{P} is uniformly testable, if for each ε there is an ε -tester for \mathcal{P} with constant query complexity.

Let \mathcal{P} be a property. An ε -tester for \mathcal{P} is a probabilistic algorithm that, given oracle access to *G* and given n := |V(G)| as input, does the following:

1. If $G \in \mathcal{P}$, then the tester accepts with probability $\geq \frac{2}{3}$,

2. if *G* is ε -far from \mathcal{P} , then the tester rejects with probability $\geq \frac{2}{3}$.

 \mathcal{P} is uniformly testable, if for each ε there is an ε -tester for \mathcal{P} with constant query complexity.

Let \mathcal{P} be a property. An ε -tester for \mathcal{P} is a probabilistic algorithm that, given oracle access to *G* and given n := |V(G)| as input, does the following:

1. If $G \in \mathcal{P}$, then the tester accepts with probability $\geq \frac{2}{3}$,

2. if *G* is ε -far from \mathcal{P} , then the tester rejects with probability $\geq \frac{2}{3}$.

 $\mathcal P$ is uniformly testable, if for each ε there is an ε -tester for $\mathcal P$ with constant query complexity.

Let \mathcal{P} be a property. An ε -tester for \mathcal{P} is a probabilistic algorithm that, given oracle access to *G* and given n := |V(G)| as input, does the following:

1. If $G \in \mathcal{P}$, then the tester accepts with probability $\geq \frac{2}{3}$,

2. if *G* is ε -far from \mathcal{P} , then the tester rejects with probability $\geq \frac{2}{3}$.

 \mathcal{P} is uniformly testable, if for each ε there is an ε -tester for \mathcal{P} with constant query complexity.

Let \mathcal{P} be a property. An ε -tester for \mathcal{P} is a probabilistic algorithm that, given oracle access to *G* and given n := |V(G)| as input, does the following:

1. If $G \in \mathcal{P}$, then the tester accepts with probability $\geq \frac{2}{3}$,

2. if *G* is ε -far from \mathcal{P} , then the tester rejects with probability $\geq \frac{2}{3}$.

 \mathcal{P} is uniformly testable, if for each ε there is an ε -tester for \mathcal{P} with constant query complexity.

Examples

On bounded degree graphs:

Uniformly testable with constant query complexity and running time:

- *k*-(edge-)connectivity
- being Eulerian
- subgraph-freeness
- induced subgraph-freeness

Not testable with constant query complexity:

- Bipartiteness, colourability
- Expander graphs
- Hamiltonicity

[Goldreich and Ron 2002; Yoshida and Ito 2010]

Examples

On bounded degree graphs:

Uniformly testable with constant query complexity and running time:

- *k*-(edge-)connectivity
- being Eulerian
- subgraph-freeness
- induced subgraph-freeness

Not testable with constant query complexity:

- Bipartiteness, colourability
- Expander graphs
- Hamiltonicity

[Goldreich and Ron 2002; Yoshida and Ito 2010]

Examples

On bounded degree graphs:

Uniformly testable with constant query complexity and running time:

- *k*-(edge-)connectivity
- being Eulerian
- subgraph-freeness
- induced subgraph-freeness

Not testable with constant query complexity:

- Bipartiteness, colourability
- Expander graphs
- Hamiltonicity

[Goldreich and Ron 2002; Yoshida and Ito 2010]

Bounded-degree model: Holy Grail I

Open problem (Holy Grail I) Characterise the properties that are (non-uniformly) testable with constant query complexity.

ISOLDE ADLER

LOGIC AND PROPERTY TESTING

12/24

Theorem (Newman and Sohler, 2013 (Benjamini, Shramm, Shapira, Elek)) Every hyperfinite property is non-uniformly testable.

Theorem (Ito, Khoury, Newman 2020) Characterisation of 1-sided error non-uniformly test monotone/hereditary graph properties

Theorem (A., Köhler, Peng 2021)

Theorem (Newman and Sohler, 2013 (Benjamini, Shramm, Shapira, Elek)) Every hyperfinite property is non-uniformly testable.

Theorem (Ito, Khoury, Newman 2020)

Characterisation of 1-sided error non-uniformly testable monotone/hereditary graph properties.

Theorem (A., Köhler, Peng 2021)

Theorem (Newman and Sohler, 2013 (Benjamini, Shramm, Shapira, Elek)) Every hyperfinite property is non-uniformly testable.

Theorem (Ito, Khoury, Newman 2020)

Characterisation of 1-sided error non-uniformly testable monotone/hereditary graph properties.

Theorem (A., Köhler, Peng 2021)

Theorem (Newman and Sohler, 2013 (Benjamini, Shramm, Shapira, Elek)) Every hyperfinite property is non-uniformly testable.

Theorem (Ito, Khoury, Newman 2020)

Characterisation of 1-sided error non-uniformly testable monotone/hereditary graph properties.

Theorem (A., Köhler, Peng 2021)
Non-testable property (proof idea)

Find an FO-formula φ whose models are expander graphs.

 $(G_i)_{i\in\mathbb{N}}$: Zig-zag construction [Rheingold, Vadhan, Wigdersen, Ann. of Math., 2002]

Non-testable property (proof idea)

Find an FO-formula φ whose models are expander graphs.

 $(G_i)_{i \in \mathbb{N}}$: zig-zag construction [Rheingold, Vadhan, Wigdersen, Ann. of Math., 2002]

Theorem (Newman and Sohler, 2013 (Benjamini, Shramm, Shapira, Elek)) Every hyperfinite property is non-uniformly testable.

Hyperfinite graph classes include

- bounded tree-width graphs,
- graphs excluding a fixed minor.

Observation

The theorem does not say anything about the running time. \exists undecidable properties (of edgeless graphs) that are testable with constant query complexity by the theorem.

Theorem (Newman and Sohler, 2013 (Benjamini, Shramm, Shapira, Elek)) Every hyperfinite property is non-uniformly testable.

Hyperfinite graph classes include

- bounded tree-width graphs,
- graphs excluding a fixed minor.

Observation

The theorem does not say anything about the running time. \exists undecidable properties (of edgeless graphs) that are testable with constant query complexity by the theorem.

Theorem (Newman and Sohler, 2013 (Benjamini, Shramm, Shapira, Elek)) Every hyperfinite property is non-uniformly testable.

Hyperfinite graph classes include

- bounded tree-width graphs,
- graphs excluding a fixed minor.

Observation

The theorem does not say anything about the running time. \exists undecidable properties (of edgeless graphs) that are testable with constant query complexity by the theorem.

Theorem (Newman and Sohler, 2013 (Benjamini, Shramm, Shapira, Elek)) Every hyperfinite property is non-uniformly testable.

Hyperfinite graph classes include

- bounded tree-width graphs,
- graphs excluding a fixed minor.

Observation

The theorem does not say anything about the running time. \exists undecidable properties (of edgeless graphs) that are testable with constant query complexity by the theorem.

Theorem (Newman and Sohler, 2013 (Benjamini, Shramm, Shapira, Elek)) Every hyperfinite property is non-uniformly testable.

Hyperfinite graph classes include

- bounded tree-width graphs,
- graphs excluding a fixed minor.

Observation

The theorem does not say anything about the running time. \exists undecidable properties (of edgeless graphs) that are testable with constant query complexity by the theorem.

Bounded-degree model: Holy Grail II

Open problem (Holy Grail II)

Characterise the properties that are uniformly testable with constant running time.

ISOLDE ADLER

LOGIC AND PROPERTY TESTING

16/24

Holy Grail II: what is known

Theorem (Benjamini, Schramm, Shapira 2008)

Every hyperfinite, monotone property is testable with constant running time.

Theorem (Czumaj, Shapira, Sohler 2009) Every hyperfinite, hereditary property is testable with constant running time.

Holy Grail II: what is known

Theorem (Benjamini, Schramm, Shapira 2008)

Every hyperfinite, monotone property is testable with constant running time.

Theorem (Czumaj, Shapira, Sohler 2009)

Every hyperfinite, hereditary property is testable with constant running time.

Contents

- 1. Property testing the bounded degree model
- 2. Testing logics on restricted graph classes

CMSO on bounded tw with sublinear running time

Theorem (A., Harwath 2018)

Let C_d^t be the class of all t-bounded tree-width graphs of degree $\leq d$.

Every MSO-definable property $\mathcal{P} \subseteq C_d^t$ is uniformly testable with constant query complexity and polylogarithmic running time.

• Open: can it be improved to constant running time?

CMSO on bounded tw with sublinear running time

Theorem (A., Harwath 2018)

Let C_d^t be the class of all t-bounded tree-width graphs of degree $\leq d$.

Every MSO-definable property $\mathcal{P} \subseteq C_d^t$ is uniformly testable with constant query complexity and polylogarithmic running time.

• Open: can it be improved to constant running time?

We consider graphs of degree \leq 1.

Example

Let

$$\varphi = \neg \exists x_1 x_2 x_3 \big(\bigwedge_{i \neq j} x_i \neq x_j \land \forall y (\neg E x_1 y) \land E x_2 x_3 \big).$$

The only graphs satisfying φ are of the form

• • • • • • • • • • • •

or

Let $\varepsilon = 1/3$. Then *G* is ε -far from satisfying φ . However, w.h.p. we will not see this by sampling a constant number of vertices from *G*.

But φ is still testable: check if *n* is even or odd.

ISOLDE ADLER

LOGIC AND PROPERTY TESTING

We consider graphs of degree \leq 1.

Example

Let

$$\varphi = \neg \exists x_1 x_2 x_3 \big(\bigwedge_{i \neq j} x_i \neq x_j \land \forall y \big(\neg E x_1 y \big) \land E x_2 x_3 \big).$$

The only graphs satisfying φ are of the form

Let $\varepsilon = 1/3$. Then *G* is ε -far from satisfying φ . However, w.h.p. we will not see this by sampling a constant number of vertices from *G*.

We consider graphs of degree \leq 1.

Example

Let

$$\varphi = \neg \exists x_1 x_2 x_3 \big(\bigwedge_{i \neq j} x_i \neq x_j \land \forall y (\neg E x_1 y) \land E x_2 x_3 \big).$$

The only graphs satisfying φ are of the form

Let $\varepsilon = 1/3$. Then *G* is ε -far from satisfying φ . However, w.h.p. we will not see this by sampling a constant number of vertices from *G*.

We consider graphs of degree \leq 1.

Example

Let

$$\varphi = \neg \exists x_1 x_2 x_3 \big(\bigwedge_{i \neq j} x_i \neq x_j \land \forall y \big(\neg E x_1 y \big) \land E x_2 x_3 \big).$$

The only graphs satisfying φ are of the form

Let $\varepsilon = 1/3$. Then *G* is ε -far from satisfying φ . However, w.h.p. we will not see this by sampling a constant number of vertices from *G*.

We consider graphs of degree \leq 1.

Example

Let

$$\varphi = \neg \exists x_1 x_2 x_3 \big(\bigwedge_{i \neq j} x_i \neq x_j \land \forall y \big(\neg E x_1 y \big) \land E x_2 x_3 \big).$$

The only graphs satisfying φ are of the form

Let $\varepsilon = 1/3$. Then *G* is ε -far from satisfying φ . However, w.h.p. we will not see this by sampling a constant number of vertices from *G*.

We consider graphs of degree \leq 1.

Example

Let

$$\varphi = \neg \exists x_1 x_2 x_3 \big(\bigwedge_{i \neq j} x_i \neq x_j \land \forall y (\neg E x_1 y) \land E x_2 x_3 \big).$$

The only graphs satisfying φ are of the form

Let $\varepsilon = 1/3$. Then *G* is ε -far from satisfying φ . However, w.h.p. we will not see this by sampling a constant number of vertices from *G*.

Let $b \in \mathbb{N}$. Class C is *b*-finitary, if every component of a graph in C has $\leq b$ vertices.

Theorem (A., Stimpson 2025+)

Let *C* be b-finitary. Then every FO-definable property is testable on *C* with constant running time.

Let C_1, C_2, \ldots, C_t be an enumeration of all isomorphism types of components of size $\leq b$.

Definition

Every b-finitary graph G has a component histogram vector \bar{v}_G where

 $\bar{v}_G[i] := \#$ occurrences of C_i in G.

Let $b \in \mathbb{N}$. Class C is *b*-finitary, if every component of a graph in C has $\leq b$ vertices.

Theorem (A., Stimpson 2025+)

Let C be b-finitary. Then every FO-definable property is testable on C with constant running time.

Let C_1, C_2, \ldots, C_t be an enumeration of all isomorphism types of components of size $\leq b$.

Definition

Every b-finitary graph G has a component histogram vector \bar{v}_G where

 $\bar{v}_G[i] := \#$ occurrences of C_i in G.

Let $b \in \mathbb{N}$. Class C is *b*-finitary, if every component of a graph in C has $\leq b$ vertices.

Theorem (A., Stimpson 2025+)

Let C be b-finitary. Then every FO-definable property is testable on C with constant running time.

Let C_1, C_2, \ldots, C_t be an enumeration of all isomorphism types of components of size $\leq b$.

Definition

Every b-finitary graph G has a component histogram vector \bar{v}_G where

 $\bar{v}_G[i] := \#$ occurrences of C_i in G.

Let $b \in \mathbb{N}$. Class C is *b*-finitary, if every component of a graph in C has $\leq b$ vertices.

Theorem (A., Stimpson 2025+)

Let C be b-finitary. Then every FO-definable property is testable on C with constant running time.

Let C_1, C_2, \ldots, C_t be an enumeration of all isomorphism types of components of size $\leq b$.

Definition

Every b-finitary graph G has a component histogram vector \bar{v}_G where

$$\bar{v}_G[i] := \#$$
 occurrences of C_i in G .

Let C_1, C_2, \ldots, C_t be an enumeration of all isomorphism types of components of size $\leq b$.

Definition

For $k \in \mathbb{N}$, a *k*-capped component histogram vector is a vector \overline{v} indexed by the C_i where every entry $\overline{v}[i]$ is either

- a number $m \in \mathbb{N}$ with $0 \le m < k$ ('rare components'), or
- $\geq k'$ ('frequent components').

Example

Let k = 10, $\bar{\nu} = (0, 2, 0, \ge 10, 0, 0, 3, \ge 10, 0, 1, 0, 6, 0, \ge 10, \ge 10, 0, \dots, 0)$.

Lemma (Corollary of Hanf's Theorem)

Let G be a b-finitary graph G and $\varphi \in FO$. Checking whether $G \models \varphi$ amounts to checking whether \bar{v}_G satisfies one of finitely many capped component histogram vectors.

Let C_1, C_2, \ldots, C_t be an enumeration of all isomorphism types of components of size $\leq b$.

Definition

For $k \in \mathbb{N}$, a *k*-capped component histogram vector is a vector \overline{v} indexed by the C_i where every entry $\overline{v}[i]$ is either

- a number $m \in \mathbb{N}$ with $0 \le m < k$ ('rare components'), or
- ' \geq k' ('frequent components').

Example

Let k = 10, $\bar{\nu} = (0, 2, 0, \ge 10, 0, 0, 3, \ge 10, 0, 1, 0, 6, 0, \ge 10, \ge 10, 0, \dots, 0)$.

Lemma (Corollary of Hanf's Theorem)

Let G be a b-finitary graph G and $\varphi \in FO$. Checking whether $G \models \varphi$ amounts to checking whether \bar{v}_G satisfies one of finitely many capped component histogram vectors.

Let C_1, C_2, \ldots, C_t be an enumeration of all isomorphism types of components of size $\leq b$.

Definition

For $k \in \mathbb{N}$, a *k*-capped component histogram vector is a vector \overline{v} indexed by the C_i where every entry $\overline{v}[i]$ is either

- a number $m \in \mathbb{N}$ with $0 \le m < k$ ('rare components'), or
- ' \geq k' ('frequent components').

Example

Let k = 10, $\bar{v} = (0, 2, 0, \ge 10, 0, 0, 3, \ge 10, 0, 1, 0, 6, 0, \ge 10, \ge 10, 0, \dots, 0)$.

Lemma (Corollary of Hanf's Theorem)

Let G be a b-finitary graph G and $\varphi \in FO$. Checking whether $G \models \varphi$ amounts to checking whether \overline{v}_G satisfies one of finitely many capped component histogram vectors.

Let C_1, C_2, \ldots, C_t be an enumeration of all isomorphism types of components of size $\leq b$.

Definition

For $k \in \mathbb{N}$, a *k*-capped component histogram vector is a vector \overline{v} indexed by the C_i where every entry $\overline{v}[i]$ is either

- a number $m \in \mathbb{N}$ with $0 \le m < k$ ('rare components'), or
- ' \geq k' ('frequent components').

Example

Let k = 10, $\bar{\nu} = (0, 2, 0, \ge 10, 0, 0, 3, \ge 10, 0, 1, 0, 6, 0, \ge 10, \ge 10, 0, \dots, 0)$.

Lemma (Corollary of Hanf's Theorem)

Let G be a b-finitary graph G and $\varphi \in FO$. Checking whether $G \models \varphi$ amounts to checking whether \bar{v}_G satisfies one of finitely many capped component histogram vectors.

Theorem (A., Stimpson 2025+)

Let C be b-finitary. Then every FO-definable property φ is testable on C with constant running time.

Proof.

Assume φ is given by a capped component histogram \bar{v} Let $n_0 := \sum_{C \text{ rare component}} \bar{v}[C] \cdot |C|$ and $g := \gcd\{|C|: C \text{ frequent component}\}.$ Fix ε . Given oracle access to *G* and n = |V(G)|:

- Sample s = s(ε) vertices from G and explore their b-neighbourhood & obtain good approximation v of G's b-neighbourhood distribution.
- If a rare component is found, reject.
- Otherwise, if $g|(n n_0)$, accept, else reject.

Theorem (A., Stimpson 2025+)

Let C be b-finitary. Then every FO-definable property φ is testable on C with constant running time.

Proof.

Assume φ is given by a capped component histogram $\bar{\nu}$.

Let $n_0 := \sum_{C \text{ rare component}} \bar{v}[C] \cdot |C|$ and

 $g := \gcd\{|C|: C \text{ frequent component}\}.$

Fix ε . Given oracle access to G and n = |V(G)|:

- If a rare component is found, reject.
- Otherwise, if $g|(n n_0)$, accept, else reject.

Theorem (A., Stimpson 2025+)

Let C be b-finitary. Then every FO-definable property φ is testable on C with constant running time.

Proof.

Assume φ is given by a capped component histogram $\bar{\nu}$.

Let $n_0 := \sum_{C \text{ rare component}} \bar{v}[C] \cdot |C|$ and

 $g := \gcd\{|C|: C \text{ frequent component}\}.$

Fix ε . Given oracle access to *G* and n = |V(G)|:

- If a rare component is found, reject.
- Otherwise, if $g|(n n_0)$, accept, else reject.

Theorem (A., Stimpson 2025+)

Let C be b-finitary. Then every FO-definable property φ is testable on C with constant running time.

Proof.

Assume φ is given by a capped component histogram \overline{v} . Let $n_0 := \sum_{C \text{ rare component}} \overline{v}[C] \cdot |C|$ and $g := \gcd\{|C|: C \text{ frequent component}\}.$ Fix ε . Given oracle access to *G* and n = |V(G)|:

- If a rare component is found, reject.
- Otherwise, if $g|(n n_0)$, accept, else reject.

Theorem (A., Stimpson 2025+)

Let C be b-finitary. Then every FO-definable property φ is testable on C with constant running time.

Proof.

Assume φ is given by a capped component histogram $\bar{\nu}$.

Let $n_0 := \sum_{C \text{ rare component}} \bar{v}[C] \cdot |C|$ and

 $g := \gcd\{|C|: C \text{ frequent component}\}.$

Fix ε . Given oracle access to *G* and n = |V(G)|:

- Sample s = s(ε) vertices from G and explore their b-neighbourhood & obtain good approximation v of G's b-neighbourhood distribution.
- If a rare component is found, reject.
- Otherwise, if $g|(n n_0)$, accept, else reject.

Theorem (A., Stimpson 2025+)

Let C be b-finitary. Then every FO-definable property φ is testable on C with constant running time.

Proof.

Assume φ is given by a capped component histogram $\bar{\nu}$.

Let $n_0 := \sum_{C \text{ rare component}} \bar{v}[C] \cdot |C|$ and

 $g := \gcd\{|C|: C \text{ frequent component}\}.$

Fix ε . Given oracle access to *G* and n = |V(G)|:

- Sample s = s(ε) vertices from G and explore their b-neighbourhood & obtain good approximation ν̄ of G's b-neighbourhood distribution.
- If a rare component is found, reject.
- Otherwise, if $g|(n n_0)$, accept, else reject.

Theorem (A., Stimpson 2025+)

Let C be b-finitary. Then every FO-definable property φ is testable on C with constant running time.

Proof.

Assume φ is given by a capped component histogram $\bar{\nu}$.

Let $n_0 := \sum_{C \text{ rare component}} \bar{v}[C] \cdot |C|$ and

 $g := \gcd\{|C|: C \text{ frequent component}\}.$

Fix ε . Given oracle access to *G* and n = |V(G)|:

- Sample s = s(ε) vertices from G and explore their b-neighbourhood & obtain good approximation v of G's b-neighbourhood distribution.
- If a rare component is found, reject.
- Otherwise, if $g|(n n_0)$, accept, else reject.

Theorem (A., Stimpson 2025+)

Let C be b-finitary. Then every FO-definable property φ is testable on C with constant running time.

Proof.

Assume φ is given by a capped component histogram $\bar{\nu}$.

Let $n_0 := \sum_{C \text{ rare component}} \bar{v}[C] \cdot |C|$ and

 $g := \gcd\{|C|: C \text{ frequent component}\}.$

Fix ε . Given oracle access to *G* and n = |V(G)|:

- Sample s = s(ε) vertices from G and explore their b-neighbourhood & obtain good approximation ν̄ of G's b-neighbourhood distribution.
- If a rare component is found, reject.
- Otherwise, if $g|(n n_0)$, accept, else reject.

Correctness: Assume *n* is large and \bar{v} is good.

Show: If no rare comp/s found and $g|(n - n_0)$, then *G* can be turned into a graph satisfying φ by a small number of modifications ('Frobenius coin problem'; Newman-Sohler).

Theorem (A., Stimpson 2025+)

Let C be b-finitary. Then every FO-definable property φ is testable on C with constant running time.

Proof.

Assume φ is given by a capped component histogram $\bar{\nu}$.

Let $n_0 := \sum_{C \text{ rare component}} \bar{v}[C] \cdot |C|$ and

 $g := \gcd\{|C|: C \text{ frequent component}\}.$

Fix ε . Given oracle access to *G* and n = |V(G)|:

- Sample s = s(ε) vertices from G and explore their b-neighbourhood & obtain good approximation v of G's b-neighbourhood distribution.
- If a rare component is found, reject.
- Otherwise, if $g|(n n_0)$, accept, else reject.

Correctness: Assume *n* is large and \bar{v} is good.

Show: If no rare comp/s found and $g|(n - n_0)$, then *G* can be turned into a graph satisfying φ by a small number of modifications ('Frobenius coin problem'; Newman-Sohler).
- Generalise approach to larger classes and logics
- Testing FO in the bounded-degree model: what is the query-complexity?

Theorem (Goldreich 2024)

Testing our property has query complexity $\Omega(\log \log \log \log n)$.

- Generalise approach to larger classes and logics
- Testing FO in the bounded-degree model: what is the query-complexity?

Theorem (Goldreich 2024)

Testing our property has query complexity $\Omega(\log \log \log \log n)$.

- Generalise approach to larger classes and logics
- Testing FO in the bounded-degree model: what is the query-complexity?

Theorem (Goldreich 2024)

Testing our property has query complexity $\Omega(\log \log \log \log n)$.

- Generalise approach to larger classes and logics
- Testing FO in the bounded-degree model: what is the query-complexity?

Theorem (Goldreich 2024)

Testing our property has query complexity $\Omega(\log \log \log \log n)$.

- Generalise approach to larger classes and logics
- Testing FO in the bounded-degree model: what is the query-complexity?

Theorem (Goldreich 2024)

Testing our property has query complexity $\Omega(\log \log \log \log n)$.

• Find the holy grails.

Merci beaucoup!

24/24

Hyperfinite graphs

Let $0 \leq \varepsilon \leq 1$ and $k \in \mathbb{N}$.

- G is (ε, k)-hyperfinite if one can remove εn edges from G and obtain a graph whose connected components have size ≤ k.
- Fix a function $\rho : \mathbb{R}^+ \to \mathbb{N}$. G is ρ -hyperfinite if G is $(\varepsilon, \rho(\varepsilon))$ -hyperfinite for every $\varepsilon > 0$.
- A graph class C is hyperfinite if there is a function ρ such that every G ∈ C is ρ-hyperfinite.

Hyperfinite graphs

Let $0 \leq \varepsilon \leq 1$ and $k \in \mathbb{N}$.

- G is (ε, k)-hyperfinite if one can remove εn edges from G and obtain a graph whose connected components have size ≤ k.
- Fix a function ρ : ℝ⁺ → ℕ.
 G is ρ-hyperfinite if G is (ε, ρ(ε))-hyperfinite for every ε > 0.
- A graph class C is hyperfinite if there is a function ρ such that every G ∈ C is ρ-hyperfinite.

Hyperfinite graphs

Let $0 \leq \varepsilon \leq 1$ and $k \in \mathbb{N}$.

- G is (ε, k)-hyperfinite if one can remove εn edges from G and obtain a graph whose connected components have size ≤ k.
- Fix a function ρ : ℝ⁺ → ℕ.
 G is ρ-hyperfinite if *G* is (ε, ρ(ε))-hyperfinite for every ε > 0.
- A graph class C is hyperfinite if there is a function ρ such that every G ∈ C is ρ-hyperfinite.