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Property testing: motivation
‘Efficiency’ when the data set is huge:
Even reading the whole input just once can be too expensive.

Data visualisation of Facebook relationships

Author: Kencf0618, License: Creative Commons Attribution-Share Alike 3.0 Unported

Aim: Sublinear algorithms with local access to the input.
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Graphs & logics

• We consider finite, simple, undirected graphs G = (V (G),E(G)).

• Class C of graphs has bounded degree, if there is a constant
d ∈ N such that all graphs in C have degree ≤ d .

• We use n to denote the number of vertices of G.

• All graph classes are closed under isomorphism, and a graph
class is sometimes called a property.

FO := First-order logic

MSO := Monadic second-order logic =
first-order logic + quantification over subsets of the universe
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Algorithms with oracle access

From now on: All graphs have degree ≤ d .

• Input: the number n of vertices of G, and

• Oracle access to G
- Query: v , for v ∈ V (G)

- Answer: the 1-neighbourhood of vertex v

• The running time = running time w.r.t. n.

• The query complexity = number of oracle queries w.r.t. n.

We use the RAM model of computation.
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Decision Problems
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Decision Problems

Property P

x YES x NO
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Property Testing = relaxation of decision problems

Property P

x Yes x No

x Yes/No

ε
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Distance (d-bounded degree model)

• Let ε ∈ [0,1].
Graphs G and H, both on n vertices, are ε-close, if we can make
them isomorphic by modifying up to εdn edges of G or H.
Edge modification = insertion/deletion

• If G,H are not ε-close, then they are ε-far.

• A graph G is ε-close to a class C if G is ε-close to some H ∈ C.
Otherwise, G is ε-far from C.
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Testability

Let P be a property.
An ε-tester for P is a probabilistic algorithm that, given oracle access
to G and given n := |V (G)| as input, does the following:

1. If G ∈ P, then the tester accepts with probability ≥ 2
3 ,

2. if G is ε-far from P, then the tester rejects with probability ≥ 2
3 .

P is uniformly testable, if for each ε there is an ε-tester for P with
constant query complexity.

P is (non-uniformly) testable, if for each ε and each n, there is a
tester for Pn := {G ∈ P : |V (G)| = n} with constant query complexity
(independent of n).
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Examples

On bounded degree graphs:

Uniformly testable with constant query complexity and running time:
• k -(edge-)connectivity
• being Eulerian
• subgraph-freeness
• induced subgraph-freeness

Not testable with constant query complexity:
• Bipartiteness, colourability
• Expander graphs
• Hamiltonicity

[Goldreich and Ron 2002; Yoshida and Ito 2010 ]
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Bounded-degree model: Holy Grail I

Open problem (Holy Grail I)
Characterise the properties that are (non-uniformly) testable with
constant query complexity.
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Holy Grail I: what is known

Theorem (Newman and Sohler, 2013 (Benjamini, Shramm, Shapira, Elek))
Every hyperfinite property is non-uniformly testable.

Theorem (Ito, Khoury, Newman 2020)
Characterisation of 1-sided error non-uniformly testable
monotone/hereditary graph properties.

Theorem (A., Köhler, Peng 2021)
There is an FO-property that is not testable on graphs of degree ≤ 3.
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Non-testable property (proof idea)

Find an FO-formula φ whose models are expander graphs.

G1

Gi

Gn

(Gi)i∈N: zig-zag construction [Rheingold, Vadhan, Wigdersen, Ann. of Math., 2002]
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PT on hyperfinite graphs

Theorem (Newman and Sohler, 2013 (Benjamini, Shramm, Shapira, Elek))
Every hyperfinite property is non-uniformly testable.

Hyperfinite graph classes include
• bounded tree-width graphs,
• graphs excluding a fixed minor.

Observation
The theorem does not say anything about the running time.
∃ undecidable properties (of edgeless graphs) that are testable with
constant query complexity by the theorem.

Typically: Any natural property that is testable with constant query
complexity is also testable with constant running time.
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Bounded-degree model: Holy Grail II

Open problem (Holy Grail II)
Characterise the properties that are uniformly testable with constant
running time.
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Holy Grail II: what is known

Theorem (Benjamini, Schramm, Shapira 2008)
Every hyperfinite, monotone property is testable with constant
running time.

Theorem (Czumaj, Shapira, Sohler 2009)
Every hyperfinite, hereditary property is testable with constant
running time.
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CMSO on bounded tw with sublinear running time

Theorem (A., Harwath 2018)
Let C t

d be the class of all t-bounded tree-width graphs of degree ≤ d.

Every MSO-definable property P ⊆ Ct
d is uniformly testable with

constant query complexity and polylogarithmic running time.

• Open: can it be improved to constant running time?
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Example: FO on degree ≤ 1

We consider graphs of degree ≤ 1.

Example
Let

φ = ¬∃x1x2x3
(∧

i ̸=j

xi ̸= xj ∧ ∀y(¬Ex1y) ∧ Ex2x3
)
.

The only graphs satisfying φ are of the form
. . .

or
. . .

Let G = . . .

Let ε = 1/3. Then G is ε-far from satisfying φ. However, w.h.p. we will
not see this by sampling a constant number of vertices from G.

But φ is still testable: check if n is even or odd.
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FO on finitary graphs

Let b ∈ N. Class C is b-finitary, if every component of a graph in C
has ≤ b vertices.

Theorem (A., Stimpson 2025+)
Let C be b-finitary. Then every FO-definable property is testable on C
with constant running time.

Let C1,C2, . . . ,Ct be an enumeration of all isomorphism types of
components of size ≤ b.

Definition
Every b-finitary graph G has a component histogram vector v̄G where

v̄G[i] := # occurrences of Ci in G.
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Capped component histograms

Let C1,C2, . . . ,Ct be an enumeration of all isomorphism types of components
of size ≤ b.

Definition
For k ∈ N, a k-capped component histogram vector is a vector v̄ indexed by
the Ci where every entry v̄ [i] is either

• a number m ∈ N with 0 ≤ m < k (‘rare components’), or
• ‘≥ k’ (‘frequent components’).

Example
Let k = 10, v̄ = (0, 2, 0,≥ 10, 0, 0, 3,≥ 10, 0, 1, 0, 6, 0,≥ 10,≥ 10, 0, . . . , 0).

Lemma (Corollary of Hanf’s Theorem)
Let G be a b-finitary graph G and φ ∈ FO. Checking whether G |= φ amounts
to checking whether v̄G satisfies one of finitely many capped component
histogram vectors.
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FO on finitary graphs

Theorem (A., Stimpson 2025+)
Let C be b-finitary. Then every FO-definable property φ is testable on C with
constant running time.

Proof.
Assume φ is given by a capped component histogram v̄ .
Let n0 :=

∑
C rare component v̄ [C] · |C| and

g := gcd{|C| : C frequent component}.
Fix ε. Given oracle access to G and n = |V (G)|:

• Sample s = s(ε) vertices from G and explore their b-neighbourhood &
obtain good approximation v̄ of G’s b-neighbourhood distribution.

• If a rare component is found, reject.
• Otherwise, if g|(n − n0), accept, else reject.

Correctness: Assume n is large and v̄ is good.
Show: If no rare comp/s found and g|(n − n0), then G can be turned into a
graph satisfying φ by a small number of modifications (‘Frobenius coin
problem’; Newman-Sohler).
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Outlook
• Generalise approach to larger classes and logics
• Testing FO in the bounded-degree model: what is the

query-complexity?

G1

Gi

Gn

Theorem (Goldreich 2024)
Testing our property has query complexity Ω(log log log log n).
• Find the holy grails.

Merci beaucoup!
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Hyperfinite graphs

Let 0 ≤ ε ≤ 1 and k ∈ N.
• G is (ε, k)-hyperfinite if one can remove εn edges from G and

obtain a graph whose connected components have size ≤ k .
• Fix a function ρ : R+ → N.

G is ρ-hyperfinite if G is (ε, ρ(ε))-hyperfinite for every ε > 0.
• A graph class C is hyperfinite if there is a function ρ such that

every G ∈ C is ρ-hyperfinite.
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